Thomas Daubon
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Daubon.
European Journal of Cell Biology | 2011
Frédéric Saltel; Thomas Daubon; Amélie Juin; Isabel Egaña Ganuza; Véronique Veillat; Elisabeth Génot
Podosomes and invadopodia are highly dynamic, actin-rich adhesion structures and represent the two founding members of the invadosome family. Podosomes form spontaneously in cells of the myelomonocytic lineage but a plethora of other cells are endowed with this capacity, under appropriate stimulation, such as a soluble factor, matrix receptor, or cell stress. Related structures called invadopodia are detected in some cancer cells or appear on cells upon oncogenic transformation. In contrast to other cell adhesion devices, invadosomes harbour metalloproteases which degrade components of the extracellular matrix. Because of this distinctive feature, invadosomes have been systematically linked with invasion processes. However, it now appears that these intriguing structures are endowed with other functions and are therefore expected to contribute to a wider range of biological processes. The invadosome field has been progressing for thirty years, expanding exponentially during the last decade, where tremendous advances have been made regarding the molecular mechanism underlying their formation, dynamics and function. Invadosomes are involved in human diseases but the causative link remains to be established. To this end, 3D analysis of invadosomes is now being actively developed in ex vivo and in vivo models to demonstrate their occurrence and establish their role in pathological and physiological processes.
Journal of Cell Science | 2009
Patricia Rottiers; Frédéric Saltel; Thomas Daubon; Benjamin Chaigne-Delalande; Viviane Tridon; Clotilde Billottet; Edith Reuzeau; Elisabeth Génot
Podosomes are specialized plasma-membrane actin-based microdomains that combine adhesive and proteolytic activities to spatially restrict sites of matrix degradation in in vitro assays, but the physiological relevance of these observations remain unknown. Inducible rings of podosomes (podosome rosettes) form in cultured aortic cells exposed to the inflammatory cytokine TGFβ. In an attempt to prove the existence of podosomes in living tissues, we developed an ex vivo endothelium observation model. This system enabled us to visualize podosome rosettes in the endothelium of native arterial vessel exposed to biologically active TGFβ. Podosomes induced in the vessel appear similar to those formed in cultured cells in terms of molecular composition, but in contrast to the latter, arrange in a protruding structure that is similar to invadopodia. Local degradation of the basement membrane scaffold protein collagen-IV, is observed underneath the structures. Our results reveal for the first time the presence of podosome rosettes in the native endothelium and provide evidence for their capacity to degrade the basement membrane, opening up new avenues to study their role in vascular pathophysiology. We propose that podosome rosettes are involved in arterial vessel remodeling.
Small GTPases | 2014
Pirjo Spuul; Paolo Ciufici; Véronique Veillat; Anne Leclercq; Thomas Daubon; IJsbrand M. Kramer; Elisabeth Génot
Podosomes and invadopodia (collectively known as invadosomes) are specialized plasma-membrane actin-based microdomains that combine adhesive properties with matrix degrading and/or mechanosensor activities. These organelles have been extensively studied in vitro and current concerted efforts aim at establishing their physiological relevance and subsequent association with human diseases. Proper functioning of the bone, immune, and vascular systems is likely to depend on these structures while their occurrence in cancer cells appears to be linked to tumor metastasis. The elucidation of the mechanisms driving invadosome assembly is a prerequisite to understanding their role in vivo and ultimately to controlling their functions. Adhesive and soluble ligands act via transmembrane receptors that propagate signals to the cytoskeleton via small G proteins of the Rho family, assisted by tyrosine kinases and scaffold proteins to induce invadosome formation and rearrangements. Oncogene expression and cell-cell interactions may also trigger their assembly. Manipulation of the signals that regulate invadosome formation and dynamics could therefore be a strategy to interfere with their functions in a multitude of pathological settings, such as excessive bone breakdown, infections, vascular remodeling, transendothelial diapedesis, and metastasis.
Molecular and Cellular Biology | 2011
Thomas Daubon; Roberto Buccione; Elisabeth Génot
ABSTRACT Podosomes are dynamic actin-rich adhesion plasma membrane microdomains endowed with extracellular matrix-degrading activities. In aortic endothelial cells, podosomes are induced by transforming growth factor β (TGF-β), but how this occurs is largely unknown. It is thought that, in endothelial cells, podosomes play a role in vessel remodeling and/or in breaching anatomical barriers. We demonstrate here that, in bovine aortic endothelial cells, that the Cdc42-specific guanine exchange factor (GEF) Fgd1 is expressed and regulated by TGF-β to induce Cdc42-dependent podosome assembly. Within 15 min of TGF-β stimulation, Fgd1, but none of the other tested Cdc42 GEFs, undergoes tyrosine phosphorylation, associates with Cdc42, and translocates to the subcortical cytoskeleton via a cortactin-dependent mechanism. Small interfering RNA-mediated Fgd1 knockdown inhibits TGF-β-induced Cdc42 activation. Fgd1 depletion also reduces podosome formation and associated matrix degradation and these defects are rescued by reexpression of Fgd1. Although overexpression of Fgd1 does not promote podosome formation per se, it enhances TGF-β-induced matrix degradation. Our results identify Fgd1 as a TGF-β-regulated GEF and, as such, the first GEF to be involved in the process of cytokine-induced podosome formation. Our findings reveal the involvement of Fgd1 in endothelial cell biology and open up new avenues to study its role in vascular pathophysiology.
Journal of Cell Science | 2012
Elisabeth Génot; Thomas Daubon; Vincenzo Sorrentino; Roberto Buccione
Summary Disabling mutations in the FGD1 gene cause faciogenital dysplasia (also known as Aarskog-Scott syndrome), a human X-linked developmental disorder that results in disproportionately short stature, facial, skeletal and urogenital anomalies, and in a number of cases, mild mental retardation. FGD1 encodes the guanine nucleotide exchange factor FGD1, which is specific for the Rho GTPase cell division cycle 42 (CDC42). CDC42 controls cytoskeleton-dependent membrane rearrangements, transcriptional activation, secretory membrane trafficking, G1 transition during the cell cycle and tumorigenic transformation. The cellular mechanisms by which FGD1 mutations lead to the hallmark skeletal deformations of faciogenital dysplasia remain unclear, but the pathology of the disease, as well as some recent discoveries, clearly show that the protein is involved in the regulation of bone development. Two recent studies unveiled new potential functions of FGD1, in particular, its involvement in the regulation of the formation and function of invadopodia and podosomes, which are cellular structures devoted to degradation of the extracellular matrix in tumour and endothelial cells. Here, we discuss the hypothesis that FGD1 might be an important regulator of events controlling extracellular matrix remodelling and possibly cell invasion in physiological and pathological settings. Additionally, we focus on how studying the cell biology of FGD1 might help us to connect the dots that link CDC42 signalling with remodelling of the extracellular matrix (ECM) in physiology and complex diseases, while, at the same time, furthering our understanding of the pathogenesis of faciogenital dysplasia.
The International Journal of Biochemistry & Cell Biology | 2015
Véronique Veillat; Pirjo Spuul; Thomas Daubon; Isabel Egaña; IJsbrand M. Kramer; Elisabeth Génot
Thirty years of research have accumulated ample evidence that podosome clusters qualify as genuine cellular organelles that are being found in more and more cell types. A podosome is a dynamic actin-based and membrane-bound microdomain and the organelle consists in an interconnected network of such basic units, forming a cytoskeletal superstructure linked to the plasma membrane. At this strategic location, podosomes are privileged sites of interactions with the pericellular environment that regulates their formation, density, lifetime, distribution, architecture and functioning. Actin polymerization is the driving force behind most podosome characteristics. In contrast to classical organelles, podosomes are not vital at the cell level but rather serve diverse and often intricate functions of which adhesion, matrix degradation and substrate sensing are the most established. These capabilities involve specific molecules, depend on podosome organization and may vary according to the cell type in which they form. Podosome-associated diseases manifest by loss or gain of podosome functions and include genetic diseases affecting podosome components and various cancers where tumor cells ectopically express podosome equivalents (invadopodia).
Oncotarget | 2016
Sébastien Bougnaud; Anna Golebiewska; Anaïs Oudin; Olivier Keunen; Patrick N. Harter; Lisa Mäder; Francisco Azuaje; Sabrina Fritah; Daniel Stieber; Tony Kaoma; Laurent Vallar; Nicolaas H. C. Brons; Thomas Daubon; Hrvoje Miletic; Terje Sundstrøm; Christel Herold-Mende; Michel Mittelbronn; Rolf Bjerkvig; Simone P. Niclou
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.
Cancer Research | 2016
Cathy Quemener; Jessica Baud; Kevin Boyé; Alexandre Dubrac; Clotilde Billottet; Fabienne Soulet; Florence Darlot; Laurent Dumartin; Marie Sire; Renaud Grépin; Thomas Daubon; Fabienne Rayne; Harald Wodrich; Anne Couvelard; Raphael Pineau; Martin Schilling; Vincenzo Castronovo; Shih-Che Sue; Kim Clarke; Abderrahim Lomri; Abdel-Majid Khatib; Martin Hagedorn; Hervé Prats; Andreas Bikfalvi
The CXCL4 paralog CXCL4L1 is a less studied chemokine that has been suggested to exert an antiangiogenic function. However, CXCL4L1 is also expressed in patient tumors, tumor cell lines, and murine xenografts, prompting a more detailed analysis of its role in cancer pathogenesis. We used genetic and antibody-based approaches to attenuate CXCL4L1 in models of pancreatic ductal adenocarcinoma (PDAC). Mechanisms of expression were assessed in cell coculture experiments, murine, and avian xenotransplants, including through an evaluation of CpG methylation and mutation of critical CpG residues. CXCL4L1 gene expression was increased greatly in primary and metastatic PDAC. We found that myofibroblasts triggered cues in the tumor microenvironment, which led to induction of CXCL4L1 in tumor cells. CXCL4L1 expression was also controlled by epigenetic modifications at critical CpG islands, which were mapped. CXCL4L1 inhibited angiogenesis but also affected tumor development more directly, depending on the tumor cell type. In vivo administration of an mAb against CXCL4L1 demonstrated a blockade in the growth of tumors positive for CXCR3, a critical receptor for CXCL4 ligands. Our findings define a protumorigenic role in PDAC development for endogenous CXCL4L1, which is independent of its antiangiogenic function. Cancer Res; 76(22); 6507-19. ©2016 AACR.
European Journal of Cell Biology | 2014
Giorgio Seano; Thomas Daubon; Elisabeth Génot; Luca Primo
Podosomes and invadopodia, collectively known as invadosomes, are specialized cell-matrix contacts with an inherent ability to degrade extracellular matrix. Their occurrence in either normal (podosomes) or cancer cells (invadopodia) is thus traditionally associated with cell invasiveness and tissue remodelling. These specialized micro-domains of the plasma membrane are characterized by enrichment of F-actin, cortactin and metalloproteases. Recent developments in the field show that, under some circumstances, vascular endothelial cells (ECs) can be induced to form this kind of peculiar structures. Cultured ECs contain either 0.5-1-μm-wide individual podosomes or 5 to 10 μm wide ring-like clusters of podosomes (podosome rosettes). The formation of individual podosomes or podosome rosettes in ECs can be induced by soluble factors, such as TGFβ, VEGF, TNFα or pharmacological agents, such as phorbol esters. Recently, the evidence of the existence of such structures in vascular endothelium has been provided by ex vivo observation. Endothelial podosome rosettes have recently been functionally linked to arterial remodelling and sprouting angiogenesis. Concerted efforts aim now at confirming the relevance of endothelial podosomes in these patho-physiological processes in vivo. In the current review, we will introduce some general considerations regarding ECs in the vascular system. From there on, we will review the various EC types where podosomes have been described and the state-of-art knowledge hitherto generated regarding endothelial podosome features.
Molecular and Cellular Biology | 2014
Filipa Curado; Pirjo Spuul; Isabel Egaña; Patricia Rottiers; Thomas Daubon; Véronique Veillat; Paul Duhamel; Anne Leclercq; Etienne Gontier; Elisabeth Génot
ABSTRACT Transforming growth factor β (TGF-β) and related cytokines play a central role in the vascular system. In vitro, TGF-β induces aortic endothelial cells to assemble subcellular actin-rich structures specialized for matrix degradation called podosomes. To explore further this TGF-β-specific response and determine in which context podosomes form, ALK5 and ALK1 TGF-β receptor signaling pathways were investigated in bovine aortic endothelial cells. We report that TGF-β drives podosome formation through ALK5 and the downstream effectors Smad2 and Smad3. Concurrent TGF-β-induced ALK1 signaling mitigates ALK5 responses through Smad1. ALK1 signaling induced by BMP9 also antagonizes TGF-β-induced podosome formation, but this occurs through both Smad1 and Smad5. Whereas ALK1 neutralization brings ALK5 signals to full potency for TGF-β-induced podosome formation, ALK1 depletion leads to cell disturbances not compatible with podosome assembly. Thus, ALK1 possesses passive and active modalities. Altogether, our results reveal specific features of ALK1 and ALK5 signaling with potential clinical implications.