Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Génot is active.

Publication


Featured researches published by Elisabeth Génot.


European Journal of Cell Biology | 2011

Invadosomes: Intriguing structures with promise

Frédéric Saltel; Thomas Daubon; Amélie Juin; Isabel Egaña Ganuza; Véronique Veillat; Elisabeth Génot

Podosomes and invadopodia are highly dynamic, actin-rich adhesion structures and represent the two founding members of the invadosome family. Podosomes form spontaneously in cells of the myelomonocytic lineage but a plethora of other cells are endowed with this capacity, under appropriate stimulation, such as a soluble factor, matrix receptor, or cell stress. Related structures called invadopodia are detected in some cancer cells or appear on cells upon oncogenic transformation. In contrast to other cell adhesion devices, invadosomes harbour metalloproteases which degrade components of the extracellular matrix. Because of this distinctive feature, invadosomes have been systematically linked with invasion processes. However, it now appears that these intriguing structures are endowed with other functions and are therefore expected to contribute to a wider range of biological processes. The invadosome field has been progressing for thirty years, expanding exponentially during the last decade, where tremendous advances have been made regarding the molecular mechanism underlying their formation, dynamics and function. Invadosomes are involved in human diseases but the causative link remains to be established. To this end, 3D analysis of invadosomes is now being actively developed in ex vivo and in vivo models to demonstrate their occurrence and establish their role in pathological and physiological processes.


Journal of Cell Biology | 2014

Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation

Franco Klingberg; Melissa L. Chow; Anne Koehler; Stellar Boo; Lara Buscemi; Thomas M. Quinn; Mercedes Costell; Benjamin A. Alman; Elisabeth Génot; Boris Hinz

A mild strain induced by matrix remodeling mechanically primes latent TGF-β1 for its subsequent activation and release in response to contractile forces.


Journal of Cell Science | 2013

Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions

Kerstin Rehm; Linda Panzer; Vanessa van Vliet; Elisabeth Génot; Stefan Linder

Summary Regulation of cell–cell contacts is essential for integrity of the vascular endothelium. Here, a critical role of the F-actin-binding protein drebrin in maintaining endothelial integrity is revealed under conditions mimicking vascular flow. Drebrin knockdown leads to weakening of cell–cell contacts, characterized by loss of nectin from adherens junctions and its subsequent lysosomal degradation. Immunoprecipitation, FRAP and mitochondrial re-targeting experiments show that nectin stabilization occurs through a chain of interactions: drebrin binding to F-actin, interaction of drebrin and afadin through their polyproline and PR1-2 regions, and recruitment of nectin through the PDZ region of afadin. Key elements are modules in drebrin that confer binding to afadin and F-actin. Evidence for this was obtained using constructs containing the PDZ region of afadin coupled to the F-actin-binding region of drebrin or to lifeact, which restore junctional nectin under knockdown of drebrin or of both drebrin and afadin. Drebrin, containing binding sites for both afadin and F-actin, is thus uniquely equipped to stabilize nectin at endothelial junctions and to preserve endothelial integrity under vascular flow.


European Journal of Cell Biology | 2014

Invadosomes in their natural habitat

Elisabeth Génot; Bojana Gligorijevic

Podosomes and invadopodia (collectively known as invadosomes) are small, F-actin-rich protrusions that are located at points of cell-ECM contacts and endow cells with invasive capabilities. So far, they have been identified in human or murine immune (myelomonocytic), vascular and cancer cells. The overarching reason for studying invadosomes is their connection to human disease. For example, macrophages and osteoclasts lacking Wiskott-Aldrich syndrome protein (WASp) are not able to form podosomes, and this leads to altered macrophage chemotaxis and defective bone resorption by osteoclasts. In contrast, the ability of cancer cells to form invadopodia is associated with high invasive and metastatic potentials. While invadosome composition, dynamics and signaling cascades leading to their assembly can be followed easily in in vitro assays, studying their contribution to pathophysiological processes in situ remains challenging. A number of recent papers have started to address this issue and describe invadosomes in situ in mouse models of cancer, cardiovascular disease and angiogenesis. In addition, in vivo invadosome homologs have been reported in developmental model systems such as C. elegans, zebrafish and sea squirt. Comparative analyses among different invasion mechanisms as they happen in their natural habitats, i.e., in situ, may provide an outline of the invadosome evolutionary history, and guide our understanding of the roles of the invasion process in pathophysiology versus development.


European Journal of Cell Biology | 2008

Regulatory signals for endothelial podosome formation.

Clotilde Billottet; Patricia Rottiers; Florence Tatin; Christine Varon; Edith Reuzeau; Jean-Léon Maître; Frédéric Saltel; Violaine Moreau; Elisabeth Génot

Podosomes are punctate actin-rich adhesion structures which spontaneously form in cells of the myelomonocytic lineage. Their formation is dependent on Src and RhoGTPases. Recently, podosomes have also been described in vascular cells. These podosomes differ from the former by the fact that they are inducible. In endothelial cells, such a signal can be provided by either constitutively active Cdc42, the PKC activator PMA or TGFbeta, depending on the model. Consequently, other regulatory pathways have been reported to contribute to podosome formation. To get more insight into the mechanisms by which podosomes form in endothelial cells, we have explored the respective contribution of signal transducers such as Cdc42-related GTPases, Smads and PKCs in three endothelial cell models. Results presented demonstrate that, in addition to Cdc42, TC10 and TCL GTPases can also promote podosome formation in endothelial cells. We also show that PKCalpha can be either necessary or entirely dispensable, depending on the cell model. In contrast, PKCdelta is essential for podosome formation in endothelial cells but not smooth muscle cells. Finally, although podosomes vary very little in their molecular composition, the signalling pathways involved in their assembly appear very diverse.


The International Journal of Biochemistry & Cell Biology | 2015

Podosomes: Multipurpose organelles?

Véronique Veillat; Pirjo Spuul; Thomas Daubon; Isabel Egaña; IJsbrand M. Kramer; Elisabeth Génot

Thirty years of research have accumulated ample evidence that podosome clusters qualify as genuine cellular organelles that are being found in more and more cell types. A podosome is a dynamic actin-based and membrane-bound microdomain and the organelle consists in an interconnected network of such basic units, forming a cytoskeletal superstructure linked to the plasma membrane. At this strategic location, podosomes are privileged sites of interactions with the pericellular environment that regulates their formation, density, lifetime, distribution, architecture and functioning. Actin polymerization is the driving force behind most podosome characteristics. In contrast to classical organelles, podosomes are not vital at the cell level but rather serve diverse and often intricate functions of which adhesion, matrix degradation and substrate sensing are the most established. These capabilities involve specific molecules, depend on podosome organization and may vary according to the cell type in which they form. Podosome-associated diseases manifest by loss or gain of podosome functions and include genetic diseases affecting podosome components and various cancers where tumor cells ectopically express podosome equivalents (invadopodia).


Cell Reports | 2016

VEGF-A/Notch-Induced Podosomes Proteolyse Basement Membrane Collagen-IV during Retinal Sprouting Angiogenesis.

Pirjo Spuul; Thomas Daubon; Bettina Pitter; Florian Alonso; Isabelle Fremaux; IJsbrand M. Kramer; Eloi Montanez; Elisabeth Génot

During angiogenic sprouting, endothelial tip cells emerge from existing vessels in a process that requires vascular basement membrane degradation. Here, we show that F-actin/cortactin/P-Src-based matrix-degrading microdomains called podosomes contribute to this step. Inxa0vitro, VEGF-A/Notch signaling regulates the formation of functional podosomes in endothelial cells. Using a retinal neovascularization model, we demonstrate that tip cells assemble podosomes during physiological angiogenesis inxa0vivo. In the retina, podosomes are also part of an interconnected network that surrounds large microvessels and impinges on the underlying basement membrane. Consistently, collagen-IV is scarce in podosome areas. Moreover, Notch inhibition exacerbates podosome formation and collagen-IV loss. We propose that the localized proteolytic action of podosomes on basement membrane collagen-IV facilitates endothelial cell sprouting and anastomosis within the developing vasculature. The identification of podosomes as key components of the sprouting machinery provides another opportunity to target angiogenesis therapeutically.


European Journal of Cell Biology | 2014

Podosomes as novel players in endothelial biology.

Giorgio Seano; Thomas Daubon; Elisabeth Génot; Luca Primo

Podosomes and invadopodia, collectively known as invadosomes, are specialized cell-matrix contacts with an inherent ability to degrade extracellular matrix. Their occurrence in either normal (podosomes) or cancer cells (invadopodia) is thus traditionally associated with cell invasiveness and tissue remodelling. These specialized micro-domains of the plasma membrane are characterized by enrichment of F-actin, cortactin and metalloproteases. Recent developments in the field show that, under some circumstances, vascular endothelial cells (ECs) can be induced to form this kind of peculiar structures. Cultured ECs contain either 0.5-1-μm-wide individual podosomes or 5 to 10 μm wide ring-like clusters of podosomes (podosome rosettes). The formation of individual podosomes or podosome rosettes in ECs can be induced by soluble factors, such as TGFβ, VEGF, TNFα or pharmacological agents, such as phorbol esters. Recently, the evidence of the existence of such structures in vascular endothelium has been provided by ex vivo observation. Endothelial podosome rosettes have recently been functionally linked to arterial remodelling and sprouting angiogenesis. Concerted efforts aim now at confirming the relevance of endothelial podosomes in these patho-physiological processes in vivo. In the current review, we will introduce some general considerations regarding ECs in the vascular system. From there on, we will review the various EC types where podosomes have been described and the state-of-art knowledge hitherto generated regarding endothelial podosome features.


Molecular and Cellular Biology | 2014

ALK5 and ALK1 Play Antagonistic Roles in Transforming Growth Factor β-Induced Podosome Formation in Aortic Endothelial Cells

Filipa Curado; Pirjo Spuul; Isabel Egaña; Patricia Rottiers; Thomas Daubon; Véronique Veillat; Paul Duhamel; Anne Leclercq; Etienne Gontier; Elisabeth Génot

ABSTRACT Transforming growth factor β (TGF-β) and related cytokines play a central role in the vascular system. In vitro, TGF-β induces aortic endothelial cells to assemble subcellular actin-rich structures specialized for matrix degradation called podosomes. To explore further this TGF-β-specific response and determine in which context podosomes form, ALK5 and ALK1 TGF-β receptor signaling pathways were investigated in bovine aortic endothelial cells. We report that TGF-β drives podosome formation through ALK5 and the downstream effectors Smad2 and Smad3. Concurrent TGF-β-induced ALK1 signaling mitigates ALK5 responses through Smad1. ALK1 signaling induced by BMP9 also antagonizes TGF-β-induced podosome formation, but this occurs through both Smad1 and Smad5. Whereas ALK1 neutralization brings ALK5 signals to full potency for TGF-β-induced podosome formation, ALK1 depletion leads to cell disturbances not compatible with podosome assembly. Thus, ALK1 possesses passive and active modalities. Altogether, our results reveal specific features of ALK1 and ALK5 signaling with potential clinical implications.


European Journal of Cell Biology | 2012

Invadopodia and rolling-type motility are specific features of highly invasive p190bcr-abl leukemic cells

Thomas Daubon; Tristan Rochelle; Nicolas Bourmeyster; Elisabeth Génot

Philadelphia chromosome results of a reciprocal translocation between chromosome 9 and 22. The translocation generates a chimeric oncogene, which, depending on the precise location of the fusion causes chronic myelogenous leukemia, CML (p210(bcr-abl)) or acute lymphoblastic leukemia, ALL (p190(bcr-abl)). The difference between p190(bcr-abl) and p210(bcr-abl) resides in the unique presence of the DH/PH domain in p210(bcr-abl). Ba/F3 cells are not motile but acquire spontaneous motility upon ectopic expression of either p190(bcr-abl) or p210(bcr-abl). Whereas p210(bcr-abl)-expressing cells present typical amoeboid motility, p190(bcr-abl)-expressing cells motility appears dependent on rolling movements. Both motility types are triggered by Vav1 in complex with Bcr-Abl, and dependent on Rac1 activity. Interestingly, the RhoA specific p210(bcr-abl) DH/PH domain regulates the motility mode by shifting motility from a rolling type toward an amoeboid one. In this study, we show that Ba/F3p190(bcr-abl)-expressing cells assemble invadopodia-like structures visualized as dense F-actin dots containing the actin polymerization machinery and bestowed with matrix degradation activities. The formation of these structures is driven by the reduction of RhoA activity associated with the loss of the DH/PH domain in p190(bcr-abl) and correlates with an increase in Cdc42 activity. Such phenotype could also be obtained by impairing p210(bcr-abl) RhoA GEF function. Thus, invadopodia formation in association with rolling-type motility characterizes p190(bcr-abl) leukemic cells. The description of invadopodia in cells harboring the p190(bcr-abl) oncoprotein presents a novel feature of these highly invasive leukemic cells and provides a novel therapeutic drug target to treat the disease.

Collaboration


Dive into the Elisabeth Génot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pirjo Spuul

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge