Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Desaive is active.

Publication


Featured researches published by Thomas Desaive.


Critical Care | 2013

Clinical review: Consensus recommendations on measurement of blood glucose and reporting glycemic control in critically ill adults

Simon Finfer; Jan Wernerman; Jean-Charles Preiser; Tony Cass; Thomas Desaive; Roman Hovorka; Jeffrey I. Joseph; Mikhail Kosiborod; James S. Krinsley; Iain MacKenzie; Dieter Mesotten; Marcus J. Schultz; Mitchell G. Scott; Robbert Slingerland; Greet Van den Berghe; Tom Van Herpe

The management reporting and assessment of glycemic control lacks standardization. The use of different methods to measure the blood glucose concentration and to report the performance of insulin treatment yields major disparities and complicates the interpretation and comparison of clinical trials. We convened a meeting of 16 experts plus invited observers from industry to discuss and where possible reach consensus on the most appropriate methods to measure and monitor blood glucose in critically ill patients and on how glycemic control should be assessed and reported. Where consensus could not be reached, recommendations on further research and data needed to reach consensus in the future were suggested. Recognizing their clear conflict of interest, industry observers played no role in developing the consensus or recommendations from the meeting. Consensus recommendations were agreed for the measurement and reporting of glycemic control in clinical trials and for the measurement of blood glucose in clinical practice. Recommendations covered the following areas: How should we measure and report glucose control when intermittent blood glucose measurements are used? What are the appropriate performance standards for intermittent blood glucose monitors in the ICU? Continuous or automated intermittent glucose monitoring - methods and technology: can we use the same measures for assessment of glucose control with continuous and intermittent monitoring? What is acceptable performance for continuous glucose monitoring systems? If implemented, these recommendations have the potential to minimize the discrepancies in the conduct and reporting of clinical trials and to improve glucose control in clinical practice. Furthermore, to be fit for use, glucose meters and continuous monitoring systems must match their performance to fit the needs of patients and clinicians in the intensive care setting.See related commentary by Soto-Rivera and Agus, http://ccforum.com/content/17/3/155


Computer Methods and Programs in Biomedicine | 2011

Tight glycemic control in critical care - The leading role of insulin sensitivity and patient variability: A review and model-based analysis

J. Geoffrey Chase; Aaron Le Compte; Fatanah M. Suhaimi; Geoffrey M. Shaw; Adrienne Lynn; J. Lin; Christopher G. Pretty; Normy N. Razak; Jacquelyn D. Parente; Christopher E. Hann; Jean-Charles Preiser; Thomas Desaive

Tight glycemic control (TGC) has emerged as a major research focus in critical care due to its potential to simultaneously reduce both mortality and costs. However, repeating initial successful TGC trials that reduced mortality and other outcomes has proven difficult with more failures than successes. Hence, there has been growing debate over the necessity of TGC, its goals, the risk of severe hypoglycemia, and target cohorts. This paper provides a review of TGC via new analyses of data from several clinical trials, including SPRINT, Glucontrol and a recent NICU study. It thus provides both a review of the problem and major background factors driving it, as well as a novel model-based analysis designed to examine these dynamics from a new perspective. Using these clinical results and analysis, the goal is to develop new insights that shed greater light on the leading factors that make TGC difficult and inconsistent, as well as the requirements they thus impose on the design and implementation of TGC protocols. A model-based analysis of insulin sensitivity using data from three different critical care units, comprising over 75,000h of clinical data, is used to analyse variability in metabolic dynamics using a clinically validated model-based insulin sensitivity metric (S(I)). Variation in S(I) provides a new interpretation and explanation for the variable results seen (across cohorts and studies) in applying TGC. In particular, significant intra- and inter-patient variability in insulin resistance (1/S(I)) is seen be a major confounder that makes TGC difficult over diverse cohorts, yielding variable results over many published studies and protocols. Further factors that exacerbate this variability in glycemic outcome are found to include measurement frequency and whether a protocol is blind to carbohydrate administration.


Biomedical Engineering Online | 2010

Validation of a Model-based Virtual Trials Method for Tight Glycemic Control in Intensive Care

J. Geoffrey Chase; Fatanah M. Suhaimi; Sophie Penning; Jean-Charles Preiser; Aaron Le Compte; J. Lin; Christopher G. Pretty; Geoffrey M. Shaw; Katherine T. Moorhead; Thomas Desaive

BackgroundIn-silico virtual patients and trials offer significant advantages in cost, time and safety for designing effective tight glycemic control (TGC) protocols. However, no such method has fully validated the independence of virtual patients (or resulting clinical trial predictions) from the data used to create them. This study uses matched cohorts from a TGC clinical trial to validate virtual patients and in-silico virtual trial models and methods.MethodsData from a 211 patient subset of the Glucontrol trial in Liege, Belgium. Glucontrol-A (N = 142) targeted 4.4-6.1 mmol/L and Glucontrol-B (N = 69) targeted 7.8-10.0 mmol/L. Cohorts were matched by APACHE II score, initial BG, age, weight, BMI and sex (p > 0.25). Virtual patients are created by fitting a clinically validated model to clinical data, yielding time varying insulin sensitivity profiles (SI(t)) that drives in-silico patients.Model fit and intra-patient (forward) prediction errors are used to validate individual in-silico virtual patients. Self-validation (tests A protocol on Group-A virtual patients; and B protocol on B virtual patients) and cross-validation (tests A protocol on Group-B virtual patients; and B protocol on A virtual patients) are used in comparison to clinical data to assess ability to predict clinical trial results.ResultsModel fit errors were small (<0.25%) for all patients, indicating model fitness. Median forward prediction errors were: 4.3, 2.8 and 3.5% for Group-A, Group-B and Overall (A+B), indicating individual virtual patients were accurate representations of real patients. SI and its variability were similar between cohorts indicating they were metabolically similar.Self and cross validation results were within 1-10% of the clinical data for both Group-A and Group-B. Self-validation indicated clinically insignificant errors due to model and/or clinical compliance. Cross-validation clearly showed that virtual patients enabled by identified patient-specific SI(t) profiles can accurately predict the performance of independent and different TGC protocols.ConclusionsThis study fully validates these virtual patients and in silico virtual trial methods, and clearly shows they can accurately simulate, in advance, the clinical results of a TGC protocol, enabling rapid in silico protocol design and optimization. These outcomes provide the first rigorous validation of a virtual in-silico patient and virtual trials methodology.


Critical Care | 2010

Organ failure and tight glycemic control in the SPRINT study

J. Geoffrey Chase; Christopher G. Pretty; Leesa Pfeifer; Geoffrey M. Shaw; Jean-Charles Preiser; Aaron Le Compte; J. Lin; Darren Hewett; Katherine T. Moorhead; Thomas Desaive

IntroductionIntensive care unit mortality is strongly associated with organ failure rate and severity. The sequential organ failure assessment (SOFA) score is used to evaluate the impact of a successful tight glycemic control (TGC) intervention (SPRINT) on organ failure, morbidity, and thus mortality.MethodsA retrospective analysis of 371 patients (3,356 days) on SPRINT (August 2005 - April 2007) and 413 retrospective patients (3,211 days) from two years prior, matched by Acute Physiology and Chronic Health Evaluation (APACHE) III. SOFA is calculated daily for each patient. The effect of the SPRINT TGC intervention is assessed by comparing the percentage of patients with SOFA ≤5 each day and its trends over time and cohort/group. Organ-failure free days (all SOFA components ≤2) and number of organ failures (SOFA components >2) are also compared. Cumulative time in 4.0 to 7.0 mmol/L band (cTIB) was evaluated daily to link tightness and consistency of TGC (cTIB ≥0.5) to SOFA ≤5 using conditional and joint probabilities.ResultsAdmission and maximum SOFA scores were similar (P = 0.20; P = 0.76), with similar time to maximum (median: one day; IQR: [1, 3] days; P = 0.99). Median length of stay was similar (4.1 days SPRINT and 3.8 days Pre-SPRINT; P = 0.94). The percentage of patients with SOFA ≤5 is different over the first 14 days (P = 0.016), rising to approximately 75% for Pre-SPRINT and approximately 85% for SPRINT, with clear separation after two days. Organ-failure-free days were different (SPRINT = 41.6%; Pre-SPRINT = 36.5%; P < 0.0001) as were the percent of total possible organ failures (SPRINT = 16.0%; Pre-SPRINT = 19.0%; P < 0.0001). By Day 3 over 90% of SPRINT patients had cTIB ≥0.5 (37% Pre-SPRINT) reaching 100% by Day 7 (50% Pre-SPRINT). Conditional and joint probabilities indicate tighter, more consistent TGC under SPRINT (cTIB ≥0.5) increased the likelihood SOFA ≤5.ConclusionsSPRINT TGC resolved organ failure faster, and for more patients, from similar admission and maximum SOFA scores, than conventional control. These reductions mirror the reduced mortality with SPRINT. The cTIB ≥0.5 metric provides a first benchmark linking TGC quality to organ failure. These results support other physiological and clinical results indicating the role tight, consistent TGC can play in reducing organ failure, morbidity and mortality, and should be validated on data from randomised trials.


Annals of Intensive Care | 2011

Pilot proof of concept clinical trials of Stochastic Targeted (STAR) glycemic control.

Alicia Evans; Geoffrey M. Shaw; Aaron Le Compte; Chia -Siong Tan; Logan Ward; James Steel; Christopher G. Pretty; Leesa Pfeifer; Sophie Penning; Fatanah M. Suhaimi; Matthew Signal; Thomas Desaive; J. Geoffrey Chase

IntroductionTight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach directly accounting for intra- and inter- patient variability with a stochastically derived maximum 5% risk of blood glucose (BG) < 4.0 mmol/L. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in pilot trials.MethodsSeven patients covering 660 hours. Insulin and nutrition interventions are given 1-3 hourly as chosen by the nurse to allow them to manage workload. Interventions are calculated by using clinically validated computer models of human metabolism and its variability in critical illness to maximize the overlap of the model-predicted (5-95th percentile) range of BG outcomes with the 4.0-6.5 mmol/L band while ensuring a maximum 5% risk of BG < 4.0 mmol/L. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of SCCM/ACCP goal (25 kg/kcal/h). Maximum insulin doses and dose changes were limited for safety. Measurements were made with glucometers. Results are compared to those for the SPRINT study, which reduced mortality 25-40% for length of stay ≥3 days. Written informed consent was obtained for all patients, and approval was granted by the NZ Upper South A Regional Ethics Committee.ResultsA total of 402 measurements were taken over 660 hours (~14/day), because nurses showed a preference for 2-hourly measurements. Median [interquartile range, (IQR)] cohort BG was 5.9 mmol/L [5.2-6.8]. Overall, 63.2%, 75.9%, and 89.8% of measurements were in the 4.0-6.5, 4.0-7.0, and 4.0-8.0 mmol/L bands. There were no hypoglycemic events (BG < 2.2 mmol/L), and the minimum BG was 3.5 mmol/L with 4.5% < 4.4 mmol/L. Per patient, the median [IQR] hours of TGC was 92 h [29-113] using 53 [19-62] measurements (median, ~13/day). Median [IQR] results: BG, 5.9 mmol/L [5.8-6.3]; carbohydrate nutrition, 6.8 g/h [5.5-8.7] (~70% goal feed median); insulin, 2.5 U/h [0.1-5.1]. All patients achieved BG < 6.1 mmol/L. These results match or exceed SPRINT and clinical workload is reduced more than 20%.ConclusionsSTAR TGC modulating insulin and nutrition inputs provided very tight control with minimal variability by managing intra- and inter- patient variability. Performance and safety exceed that of SPRINT, which reduced mortality and cost in the Christchurch ICU. The use of glucometers did not appear to impact the quality of TGC. Finally, clinical workload was self-managed and reduced 20% compared with SPRINT.


IEEE Transactions on Biomedical Engineering | 2012

STAR Development and Protocol Comparison

Liam M. Fisk; Aj Le Compte; Geoffrey M. Shaw; Sophie Penning; Thomas Desaive; J.G. Chase

Accurate glycemic control (AGC) is difficult due to excessive hypoglycemia risk. Stochastic TARgeted (STAR) glycemic control forecasts changes in insulin sensitivity to calculate a range of glycemic outcomes for an insulin intervention, creating a risk framework to improve safety and performance. An improved, simplified STAR framework was developed to reduce light hypoglycemia and clinical effort, while improving nutrition rates and performance. Blood glucose (BG) levels are targeted to 80-145 mg/dL, using insulin and nutrition control for 1-3 h interventions. Insulin changes are limited to +3U/h and nutrition to ±30% of goal rate (minimum 30%). All targets and rate change limits are clinically specified and generalizable. Clinically validated virtual trials were run on using clinical data from 371 patients (39841 h) from the Specialized Relative Insulin and Nutrition Tables (SPRINT) cohort. Cohort and per-patient results are compared to clinical SPRINT data, and virtual trials of three published protocols. Performance was measured as time within glycemic bands, and safety by patients with severe (BG <; 40 mg/dL) and mild (%BG <; 72 mg/dL) hypoglycemia. Pilot trial results from the first ten patients (1486 h) are included to support the in-silico findings. In both virtual and clinical trials, mild hypoglycemia was below 2% versus 4% for SPRINT. Severe hypoglycemia was reduced from 14 (SPRINT) to 6 (STAR), and 0 in the pilot trial. AGC was tighter than both SPRINT clinical data and in-silico comparison protocols, with 91% BG within the specified target (80-145 mg/dL) in virtual trials and 89.4% in pilot trials. Clinical effort (measurements) was reduced from 16.2/day to 11.8/day (13.5/day in pilot trials). This STAR framework provides safe AGC with significant reductions in hypoglycemia and clinical effort due to stochastic forecasting of patient variation - a unique risk-based approach. Initial pilot trials validate the in-silico design methods and resulting protocol, all of which can be generalized to suit any given clinical environment.


Biomedical Engineering Online | 2011

Model-based PEEP optimisation in mechanical ventilation

Yeong Shiong Chiew; J.G. Chase; Geoffrey M. Shaw; A. Sundaresan; Thomas Desaive

BackgroundAcute Respiratory Distress Syndrome (ARDS) patients require mechanical ventilation (MV) for breathing support. Patient-specific PEEP is encouraged for treating different patients but there is no well established method in optimal PEEP selection.MethodsA study of 10 patients diagnosed with ALI/ARDS whom underwent recruitment manoeuvre is carried out. Airway pressure and flow data are used to identify patient-specific constant lung elastance (Elung ) and time-variant dynamic lung elastance (Edrs ) at each PEEP level (increments of 5cmH2O), for a single compartment linear lung model using integral-based methods. Optimal PEEP is estimated using Elung versus PEEP, Edrs -Pressure curve and Edrs Area at minimum elastance (maximum compliance) and the inflection of the curves (diminishing return). Results are compared to clinically selected PEEP values. The trials and use of the data were approved by the New Zealand South Island Regional Ethics Committee.ResultsMedian absolute percentage fitting error to the data when estimating time-variant Edrs is 0.9% (IQR = 0.5-2.4) and 5.6% [IQR: 1.8-11.3] when estimating constant Elung . Both Elung and Edrs decrease with PEEP to a minimum, before rising, and indicating potential over-inflation. Median Edrs over all patients across all PEEP values was 32.2 cmH2O/l [IQR: 26.1-46.6], reflecting the heterogeneity of ALI/ARDS patients, and their response to PEEP, that complicates standard approaches to PEEP selection. All Edrs -Pressure curves have a clear inflection point before minimum Edrs , making PEEP selection straightforward. Model-based selected PEEP using the proposed metrics were higher than clinically selected values in 7/10 cases.ConclusionContinuous monitoring of the patient-specific Elung and Edrs and minimally invasive PEEP titration provide a unique, patient-specific and physiologically relevant metric to optimize PEEP selection with minimal disruption of MV therapy.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Effective arterial elastance as an index of pulmonary vascular load.

Philippe Morimont; Bernard Lambermont; Alexandre Ghuysen; Pierre Gerard; Philippe Kolh; Patrizio Lancellotti; Vincent Tchana-Sato; Thomas Desaive; Vincenzo D'Orio

The aim of this study was to test whether the simple ratio of right ventricular (RV) end-systolic pressure (Pes) to stroke volume (SV), known as the effective arterial elastance (Ea), provides a valid assessment of pulmonary arterial load in case of pulmonary embolism- or endotoxin-induced pulmonary hypertension. Ventricular pressure-volume (PV) data (obtained with conductance catheters) and invasive pulmonary arterial pressure and flow waveforms were simultaneously recorded in two groups of six pure Pietran pigs, submitted either to pulmonary embolism (group A) or endotoxic shock (group B). Measurements were obtained at baseline and each 30 min after injection of autologous blood clots (0.3 g/kg) in the superior vena cava in group A and after endotoxin infusion in group B. Two methods of calculation of pulmonary arterial load were compared. On one hand, Ea provided by using three-element windkessel model (WK) of the pulmonary arterial system [Ea(WK)] was referred to as standard computation. On the other hand, similar to the systemic circulation, Ea was assessed as the ratio of RV Pes to SV [Ea(PV) = Pes/SV]. In both groups, although the correlation between Ea(PV) and Ea(WK) was excellent over a broad range of altered conditions, Ea(PV) systematically overestimated Ea(WK). This offset disappeared when left atrial pressure (Pla) was incorporated into Ea [Ea * (PV) = (Pes - Pla)/SV]. Thus Ea * (PV), defined as the ratio of RV Pes minus Pla to SV, provides a convenient, useful, and simple method to assess the pulmonary arterial load and its impact on the RV function.


Annals of Intensive Care | 2012

Variability of insulin sensitivity during the first 4 days of critical illness: implications for tight glycemic control

Christopher G. Pretty; Aaron Le Compte; J. Geoffrey Chase; Geoffrey M. Shaw; Jean-Charles Preiser; Sophie Penning; Thomas Desaive

BackgroundEffective tight glycemic control (TGC) can improve outcomes in critical care patients, but it is difficult to achieve consistently. Insulin sensitivity defines the metabolic balance between insulin concentration and insulin-mediated glucose disposal. Hence, variability of insulin sensitivity can cause variable glycemia. This study quantifies and compares the daily evolution of insulin sensitivity level and variability for critical care patients receiving TGC.MethodsThis is a retrospective analysis of data from the SPRINT TGC study involving patients admitted to a mixed medical-surgical ICU between August 2005 and May 2007. Only patients who commenced TGC within 12 hours of ICU admission and spent at least 24 hours on the SPRINT protocol were included (N = 164). Model-based insulin sensitivity (SI) was identified each hour. Absolute level and hour-to-hour percent changes in SI were assessed on cohort and per-patient bases. Levels and variability of SI were compared over time on 24-hour and 6-hour timescales for the first 4 days of ICU stay.ResultsCohort and per-patient median SI levels increased by 34% and 33% (p < 0.001) between days 1 and 2 of ICU stay. Concomitantly, cohort and per-patient SI variability decreased by 32% and 36% (p < 0.001). For 72% of the cohort, median SI on day 2 was higher than on day 1. The day 1–2 results are the only clear, statistically significant trends across both analyses. Analysis of the first 24 hours using 6-hour blocks of SI data showed that most of the improvement in insulin sensitivity level and variability seen between days 1 and 2 occurred during the first 12–18 hours of day 1.ConclusionsCritically ill patients have significantly lower and more variable insulin sensitivity on day 1 than later in their ICU stay and particularly during the first 12 hours. This rapid improvement is likely due to the decline of counter-regulatory hormones as the acute phase of critical illness progresses. Clinically, these results suggest that while using TGC protocols with patients during their first few days of ICU stay, extra care should be afforded. Increased measurement frequency, higher target glycemic bands, conservative insulin dosing, and modulation of carbohydrate nutrition should be considered to minimize safely the outcome glycemic variability and reduce the risk of hypoglycemia.


Computer Methods and Programs in Biomedicine | 2007

Model-based cardiac diagnosis of pulmonary embolism

C. Starfinger; Christopher E. Hann; J.G. Chase; Thomas Desaive; Alexandre Ghuysen; Geoffrey M. Shaw

A minimal cardiac model has been shown to accurately capture a wide range of cardiovascular system dynamics commonly seen in the intensive care unit (ICU). However, standard parameter identification methods for this model are highly non-linear and non-convex, hindering real-time clinical application. An integral-based identification method that transforms the problem into a linear, convex problem, has been previously developed, but was only applied on continuous simulated data with random noise. This paper extends the method to handle discrete sets of clinical data, unmodelled dynamics, a significantly reduced data set theta requires only the minimum and maximum values of the pressure in the aorta, pulmonary artery and the volumes in the ventricles. The importance of integrals in the formulation for noise reduction is illustrated by demonstrating instability in the identification using simple derivative-based approaches. The cardiovascular system (CVS) model and parameter identification method are then clinically validated on porcine data for pulmonary embolism. Errors for the identified model are within 10% when re-simulated and compared to clinical data. All identified parameter trends match clinically expected changes. This work represents the first clinical validation of these models, methods and approach to cardiovascular diagnosis in critical care.

Collaboration


Dive into the Thomas Desaive's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.G. Chase

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.M. Shaw

Christchurch Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge