Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas E. Sussan is active.

Publication


Featured researches published by Thomas E. Sussan.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice

Thomas E. Sussan; Tirumalai Rangasamy; David J. Blake; Deepti Malhotra; Hazim El-Haddad; Djahida Bedja; Melinda S. Yates; Ponvijay Kombairaju; Masayuki Yamamoto; Karen T. Liby; Michael B. Sporn; Kathleen L. Gabrielson; Hunter C. Champion; Rubin M. Tuder; Thomas W. Kensler; Shyam Biswal

Chronic obstructive pulmonary disease (COPD), which comprises emphysema and chronic bronchitis resulting from prolonged exposure to cigarette smoke (CS), is a major public health burden with no effective treatment. Emphysema is also associated with pulmonary hypertension, which can progress to right ventricular failure, an important cause of morbidity and mortality among patients with COPD. Nuclear erythroid 2 p45 related factor-2 (Nrf2) is a redox-sensitive transcription factor that up-regulates a battery of antioxidative genes and cytoprotective enzymes that constitute the defense against oxidative stress. Recently, it has been shown that patients with advanced COPD have a decline in expression of the Nrf2 pathway in lungs, suggesting that loss of this antioxidative protective response is a key factor in the pathophysiological progression of emphysema. Furthermore, genetic disruption of Nrf2 in mice causes early-onset and severe emphysema. The present study evaluated whether the strategy of activation of Nrf2 and its downstream network of cytoprotective genes with a small molecule would attenuate CS-induced oxidative stress and emphysema. Nrf2+/+ and Nrf2−/− mice were fed a diet containing the potent Nrf2 activator, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), while being exposed to CS for 6 months. CDDO-Im significantly reduced lung oxidative stress, alveolar cell apoptosis, alveolar destruction, and pulmonary hypertension in Nrf2+/+ mice caused by chronic exposure to CS. This protection from CS-induced emphysema depended on Nrf2, as Nrf2−/− mice failed to show significant reduction in alveolar cell apoptosis and alveolar destruction after treatment with CDDO-Im. These results suggest that targeting the Nrf2 pathway during the etiopathogenesis of emphysema may represent an important approach for prophylaxis against COPD.


American Journal of Respiratory and Critical Care Medicine | 2011

Telomere Length Is a Determinant of Emphysema Susceptibility

Jonathan K. Alder; Nini Guo; Frant Kembou; Erin M. Parry; Collin J. Anderson; Amany I. Gorgy; Michael Walsh; Thomas E. Sussan; Shyam Biswal; Wayne Mitzner; Rubin M. Tuder; Mary Armanios

RATIONALE Germline mutations in the enzyme telomerase cause telomere shortening, and have their most common clinical manifestation in age-related lung disease that manifests as idiopathic pulmonary fibrosis. Short telomeres are also a unique heritable trait that is acquired with age. OBJECTIVES We sought to understand the mechanisms by which telomerase deficiency contributes to lung disease. METHODS We studied telomerase null mice with short telomeres. MEASUREMENTS AND MAIN RESULTS Although they have no baseline histologic defects, when mice with short telomeres are exposed to chronic cigarette smoke, in contrast with controls, they develop emphysematous air space enlargement. The emphysema susceptibility did not depend on circulating cell genotype, because mice with short telomeres developed emphysema even when transplanted with wild-type bone marrow. In lung epithelium, cigarette smoke exposure caused additive DNA damage to telomere dysfunction, which limited their proliferative recovery, and coincided with a failure to down-regulate p21, a mediator of cellular senescence, and we show here, a determinant of alveolar epithelial cell cycle progression. We also report early onset of emphysema, in addition to pulmonary fibrosis, in a family with a germline deletion in the Box H domain of the RNA component of telomerase. CONCLUSIONS Our data indicate that short telomeres lower the threshold of cigarette smoke-induced damage, and implicate telomere length as a genetic susceptibility factor in emphysema, potentially contributing to its age-related onset in humans.


Nature Medicine | 2010

Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke-induced pulmonary injury and emphysema

Toshinori Yoshida; Igor Mett; Anil K. Bhunia; Joel Bowman; Mario J. Perez; Li Zhang; Aneta Gandjeva; Lijie Zhen; Ugonma Chukwueke; Tianzhi Mao; Amy Richter; Emile N. Brown; Hagit Ashush; Natalie Notkin; Anna Gelfand; Rajesh K. Thimmulappa; Tirumalai Rangasamy; Thomas E. Sussan; Gregory P. Cosgrove; Majd Mouded; Steven D. Shapiro; Irina Petrache; Shyam Biswal; Elena Feinstein; Rubin M. Tuder

Rtp801 (also known as Redd1, and encoded by Ddit4), a stress-related protein triggered by adverse environmental conditions, inhibits mammalian target of rapamycin (mTOR) by stabilizing the TSC1-TSC2 inhibitory complex and enhances oxidative stress–dependent cell death. We postulated that Rtp801 acts as a potential amplifying switch in the development of cigarette smoke–induced lung injury, leading to emphysema. Rtp801 mRNA and protein were overexpressed in human emphysematous lungs and in lungs of mice exposed to cigarette smoke. The regulation of Rtp801 expression by cigarette smoke may rely on oxidative stress–dependent activation of the CCAAT response element in its promoter. We also found that Rtp801 was necessary and sufficient for nuclear factor-κB (NF-κB) activation in cultured cells and, when forcefully expressed in mouse lungs, it promoted NF-κB activation, alveolar inflammation, oxidative stress and apoptosis of alveolar septal cells. In contrast, Rtp801 knockout mice were markedly protected against acute cigarette smoke–induced lung injury, partly via increased mTOR signaling, and, when exposed chronically to cigarette smoke, against emphysema. Our data support the notion that Rtp801 may represent a major molecular sensor and mediator of cigarette smoke–induced lung injury.


Nature | 2008

Trisomy represses Apc(Min)-mediated tumours in mouse models of Down's syndrome.

Thomas E. Sussan; Annan Yang; Fuhai Li; Michael C. Ostrowski; Roger H. Reeves

Epidemiological studies spanning more than 50 yr reach conflicting conclusions as to whether there is a lower incidence of solid tumours in people with trisomy 21 (Down’s syndrome). We used mouse models of Down’s syndrome and of cancer in a biological approach to investigate the relationship between trisomy and the incidence of intestinal tumours. ApcMin-mediated tumour number was determined in aneuploid mouse models Ts65Dn, Ts1Rhr and Ms1Rhr. Trisomy for orthologues of about half of the genes on chromosome 21 (Hsa21) in Ts65Dn mice or just 33 of these genes in Ts1Rhr mice resulted in a significant reduction in the number of intestinal tumours. In Ms1Rhr, segmental monosomy for the same 33 genes that are triplicated in Ts1Rhr resulted in an increased number of tumours. Further studies demonstrated that the Ets2 gene contributed most of the dosage-sensitive effect on intestinal tumour number. The action of Ets2 as a repressor when it is overexpressed differs from tumour suppression, which requires normal gene function to prevent cellular transformation. Upregulation of Ets2 and, potentially, other genes involved in this kind of protective effect may provide a prophylactic effect in all individuals, regardless of ploidy.


American Journal of Respiratory and Critical Care Medicine | 2009

Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity

Deepti Malhotra; Rajesh K. Thimmulappa; Neeraj Vij; Ana Navas-Acien; Thomas E. Sussan; Salim Merali; Li Zhang; Steven G. Kelsen; Allen C. Myers; Robert A. Wise; Rubin M. Tuder; Shyam Biswal

RATIONALE Nuclear factor erythroid 2-related factor 2 (Nrf2), an important regulator of lung antioxidant defenses, declines in chronic obstructive pulmonary disease (COPD). However, Nrf2 also regulates the proteasome system that degrades damaged and misfolded proteins. Because accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and ER stress-induced apoptosis, Nrf2 may potentially prevent ER stress-mediated apoptosis in COPD. OBJECTIVES To determine whether Nrf2-regulated proteasome function affects ER stress-mediated apoptosis in COPD. METHODS We assessed the expression of Nrf2, Nrf2-dependent proteasomal subunits, proteasomal activity, markers of ER stress, and apoptosis in emphysematous lungs of mice exposed to cigarette smoke (CS) as well as peripheral lung tissues from normal control subjects and patients with COPD. MEASUREMENTS AND MAIN RESULTS Compared with wild-type mice, emphysematous lungs of CS-exposed Nrf2-deficient mice exhibited markedly lower proteasomal activity and elevated markers of ER stress and apoptosis. Furthermore, compared with normal control subjects, lungs of patients with mild and advanced COPD showed a marked decrease in the expression of Nrf2-regulated proteasomal subunits and total proteasomal activity. However, they were associated with greater levels of ER stress and apoptosis markers. In vitro studies have demonstrated that enhancing proteasomal activity in Beas2B cells either by sulforaphane, an activator of Nrf2, or overexpression of Nrf2-regulated proteasomal subunit PSMB6, significantly inhibited cigarette smoke condensate (CSC)-induced ER stress and cell death. CONCLUSIONS Impaired Nrf2 signaling causes significant decline in proteasomal activity and heightens ER stress response in lungs of patients with COPD and CS-exposed mice. Accordingly, pharmacological approaches that augment Nrf2 activity may protect against COPD progression by both up-regulating antioxidant defenses and relieving ER stress.


PLOS ONE | 2008

Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice.

Thomas E. Sussan; Jonathan C. Jun; Rajesh K. Thimmulappa; Djahida Bedja; Maria Antero; Kathleen L. Gabrielson; Vsevolod Y. Polotsky; Shyam Biswal

Background Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2 −/−) causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. Principal Findings To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2 −/− mice with apoliporotein E-deficient (ApoE −/−) mice. ApoE −/− and ApoE −/− Nrf2 −/− mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE −/− Nrf2 −/− mice exhibited significantly smaller plaque area than ApoE −/− controls (11.5% vs 29.5%). This decrease in plaque area observed in ApoE −/− Nrf2 −/− mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL) by isolated macrophages from ApoE −/− Nrf2 −/− mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE −/− Nrf2 −/− mice exhibited decreased expression of the scavenger receptor CD36. Conclusions Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.


PLOS ONE | 2015

Exposure to Electronic Cigarettes Impairs Pulmonary Anti-Bacterial and Anti-Viral Defenses in a Mouse Model

Thomas E. Sussan; Sachin Gajghate; Rajesh K. Thimmulappa; Jinfang Ma; Jung Hyun Kim; Kuladeep Sudini; Nicola Consolini; Stephania A. Cormier; Slawo Lomnicki; Farhana Hasan; Andrew Pekosz; Shyam Biswal

Electronic cigarettes (E-cigs) have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor contains 7x1011 free radicals per puff. To determine whether E-cig exposure impacts pulmonary responses in mice, we developed an inhalation chamber for E-cig exposure. Mice that were exposed to E-cig vapor contained serum cotinine concentrations that are comparable to human E-cig users. E-cig exposure for 2 weeks produced a significant increase in oxidative stress and moderate macrophage-mediated inflammation. Since, COPD patients are susceptible to bacterial and viral infections, we tested effects of E-cigs on immune response. Mice that were exposed to E-cig vapor showed significantly impaired pulmonary bacterial clearance, compared to air-exposed mice, following an intranasal infection with Streptococcus pneumonia. This defective bacterial clearance was partially due to reduced phagocytosis by alveolar macrophages from E-cig exposed mice. In response to Influenza A virus infection, E-cig exposed mice displayed increased lung viral titers and enhanced virus-induced illness and mortality. In summary, this study reports a murine model of E-cig exposure and demonstrates that E-cig exposure elicits impaired pulmonary anti-microbial defenses. Hence, E-cig exposure as an alternative to cigarette smoking must be rigorously tested in users for their effects on immune response and susceptibility to bacterial and viral infections.


American Journal of Respiratory and Critical Care Medicine | 2012

Heightened Endoplasmic Reticulum Stress in the Lungs of Patients with Chronic Obstructive Pulmonary Disease

Deepti Malhotra; Rajesh K. Thimmulappa; Neeraj Vij; Ana Navas-Acien; Thomas E. Sussan; Salim Merali; Li Zhang; Steven G. Kelsen; Allen C. Myers; Robert A. Wise; Rubin M. Tuder; Shyam Biswal

RATIONALE Nuclear factor erythroid 2-related factor 2 (Nrf2), an important regulator of lung antioxidant defenses, declines in chronic obstructive pulmonary disease (COPD). However, Nrf2 also regulates the proteasome system that degrades damaged and misfolded proteins. Because accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and ER stress-induced apoptosis, Nrf2 may potentially prevent ER stress-mediated apoptosis in COPD. OBJECTIVES To determine whether Nrf2-regulated proteasome function affects ER stress-mediated apoptosis in COPD. METHODS We assessed the expression of Nrf2, Nrf2-dependent proteasomal subunits, proteasomal activity, markers of ER stress, and apoptosis in emphysematous lungs of mice exposed to cigarette smoke (CS) as well as peripheral lung tissues from normal control subjects and patients with COPD. MEASUREMENTS AND MAIN RESULTS Compared with wild-type mice, emphysematous lungs of CS-exposed Nrf2-deficient mice exhibited markedly lower proteasomal activity and elevated markers of ER stress and apoptosis. Furthermore, compared with normal control subjects, lungs of patients with mild and advanced COPD showed a marked decrease in the expression of Nrf2-regulated proteasomal subunits and total proteasomal activity. However, they were associated with greater levels of ER stress and apoptosis markers. In vitro studies have demonstrated that enhancing proteasomal activity in Beas2B cells either by sulforaphane, an activator of Nrf2, or overexpression of Nrf2-regulated proteasomal subunit PSMB6, significantly inhibited cigarette smoke condensate (CSC)-induced ER stress and cell death. CONCLUSIONS Impaired Nrf2 signaling causes significant decline in proteasomal activity and heightens ER stress response in lungs of patients with COPD and CS-exposed mice. Accordingly, pharmacological approaches that augment Nrf2 activity may protect against COPD progression by both up-regulating antioxidant defenses and relieving ER stress.


PLOS ONE | 2008

Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice

Masashi Fujihara; Norihiro Nagai; Thomas E. Sussan; Shyam Biswal; James T. Handa

The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early age-related macular degeneration (AMD). Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2% paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE) by 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-OHdG) immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had immunolabeling for 8-OHdG in 85±3.7% of RPE cells counted compared to 9.5±3.9% in controls (p<0.00001). Bruch membrane was thicker in mice exposed to smoke (1086±332 nm) than those raised in air (543±132 nm; p = 0.0069). The two most pronounced ultrastructural changes (severity grading scale from 0–3) seen were a loss of basal infoldings (mean difference in grade = 1.98; p<0.0001), and an increase in intracellular vacuoles (mean difference in grade = 1.7; p<0.0001). Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference in grade = 0.54; p<0.0001), increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002), and increased basal laminar deposit continuity (mean difference in grade = 0.4; p<0.0001). TUNEL assay showed a higher percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.0±1.1%) than room air (average 0±0%; p = 0.043). Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the mechanism of smoke induced changes during early AMD.


American Journal of Respiratory and Critical Care Medicine | 2013

Chronic Intermittent Hypoxia Induces Atherosclerosis via Activation of Adipose Angiopoietin-like 4

Luciano F. Drager; Qiaoling Yao; Karen L. Hernandez; Mi Kyung Shin; Shannon Bevans-Fonti; Thomas E. Sussan; Jonathan C. Jun; Allen C. Myers; Alan R. Schwartz; Nils Halberg; Philipp E. Scherer; Gregg L. Semenza; David R. Powell; Vsevolod Y. Polotsky

RATIONALE Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. OBJECTIVES To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). METHODS ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. MEASUREMENTS AND MAIN RESULTS In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. CONCLUSIONS HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.

Collaboration


Dive into the Thomas E. Sussan's collaboration.

Top Co-Authors

Avatar

Shyam Biswal

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rubin M. Tuder

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Robert A. Wise

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge