Tilman Breiderhoff
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tilman Breiderhoff.
Neuron | 2001
Sandra M. Stobrawa; Tilman Breiderhoff; Shigeo Takamori; Dominique Engel; Michaela Schweizer; Anselm A. Zdebik; Michael R. Bösl; Klaus Ruether; Holger Jahn; Andreas Draguhn; Reinhard Jahn; Thomas J. Jentsch
Several plasma membrane chloride channels are well characterized, but much less is known about the molecular identity and function of intracellular Cl- channels. ClC-3 is thought to mediate swelling-activated plasma membrane currents, but we now show that this broadly expressed chloride channel is present in endosomal compartments and synaptic vesicles of neurons. While swelling-activated currents are unchanged in mice with disrupted ClC-3, acidification of synaptic vesicles is impaired and there is severe postnatal degeneration of the retina and the hippocampus. Electrophysiological analysis of juvenile hippocampal slices revealed no major functional abnormalities despite slightly increased amplitudes of miniature excitatory postsynaptic currents. Mice almost lacking the hippocampus survive and show several behavioral abnormalities but are still able to acquire motor skills.
Journal of Biological Chemistry | 1999
Thomas Friedrich; Tilman Breiderhoff; Thomas J. Jentsch
ClC-4 and ClC-5, together with ClC-3, form a distinct branch of the CLC chloride channel family. Although ClC-5 was shown to be mainly expressed in endocytotic vesicles, expression of ClC-5 in Xenopus oocytes elicited chloride currents. We now show that ClC-4 also gives rise to strongly outwardly rectifying anion currents when expressed in oocytes. They closely resemble ClC-5 currents with which they share a NO3 − > Cl− > Br− > I− conductance sequence that differs from that reported for the highly homologous ClC-3. Both ClC-4 and ClC-5 currents are reduced by lowering extracellular pH. We could measure similar currents after expressing either channel in HEK293 cells. To demonstrate that these currents are directly mediated by the channel proteins, we introduced several point mutations that change channel characteristics. In ClC-5, several point mutations alter the kinetics of activation but leave macroscopic rectification and ion selectivity unchanged. A mutation (N565K) equivalent to a mutation reported to have profound effects on ClC-3 does not have similar effects on ClC-5. Moreover, a mutation at the end of D2 (S168T in ClC-5) changes ion selectivity, and a mutation at the end of D3 (E211A in ClC-5 and E224A in ClC-4) changes voltage dependence and ion selectivity. This shows that ClC-4 and ClC-5 can directly mediate plasma membrane currents.
Nature Neuroscience | 2007
Pernille Jansen; Klaus M. Giehl; Jens R. Nyengaard; Kenneth K. Teng; Oleg Lioubinski; Susanne S. Sjoegaard; Tilman Breiderhoff; Michael Gotthardt; Fuyu Lin; Andreas Eilers; Claus Munck Petersen; Gary R. Lewin; Barbara L. Hempstead; Thomas E. Willnow; Anders Nykjaer
Neurotrophins are essential for development and maintenance of the vertebrate nervous system. Paradoxically, although mature neurotrophins promote neuronal survival by binding to tropomyosin receptor kinases and p75 neurotrophin receptor (p75NTR), pro-neurotrophins induce apoptosis in cultured neurons by engaging sortilin and p75NTR in a death-signaling receptor complex. Substantial amounts of neurotrophins are secreted in pro-form in vivo, yet their physiological significance remains unclear. We generated a sortilin-deficient mouse to examine the contribution of the p75NTR/sortilin receptor complex to neuronal viability. In the developing retina, Sortilin 1 (Sort1)−/− mice showed reduced neuronal apoptosis that was indistinguishable from that observed in p75NTR-deficient (Ngfr−/−) mice. To our surprise, although sortilin deficiency did not affect developmentally regulated apoptosis of sympathetic neurons, it did prevent their age-dependent degeneration. Furthermore, in an injury protocol, lesioned corticospinal neurons in Sort1−/− mice were protected from death. Thus, the sortilin pathway has distinct roles in pro-neurotrophin–induced apoptotic signaling in pathological conditions, but also in specific stages of neuronal development and aging.
Cell Metabolism | 2010
Mads Kjolby; Olav M. Andersen; Tilman Breiderhoff; Anja W. Fjorback; Karen M. Pedersen; Peder Madsen; Pernille Jansen; Joerg Heeren; Thomas E. Willnow; Anders Nykjaer
Recent genome-wide association studies (GWAS) have revealed strong association of hypercholesterolemia and myocardial infarction with SNPs on human chromosome 1p13.3. This locus covers three genes: SORT1, CELSR2, and PSRC1. We demonstrate that sortilin, encoded by SORT1, is an intracellular sorting receptor for apolipoprotein (apo) B100. It interacts with apoB100 in the Golgi and facilitates the formation and hepatic export of apoB100-containing lipoproteins, thereby regulating plasma low-density lipoprotein (LDL) cholesterol. Absence of sortilin in gene-targeted mice reduces secretion of lipoproteins from the liver and ameliorates hypercholesterolemia and atherosclerotic lesion formation in LDL receptor-deficient animals. In contrast, sortilin overexpression stimulates hepatic release of lipoproteins and increases plasma LDL levels. Our data have uncovered a regulatory pathway in hepatic lipoprotein export and suggest a molecular explanation for the cardiovascular risk being associated with 1p13.3.
Molecular and Cellular Biology | 2006
Helle Heibroch Petersen; Thomas K. Andreassen; Tilman Breiderhoff; Jan Hinrich Bräsen; Herbert Schulz; Volkmar Gross; Hermann Josef Gröne; Anders Nykjaer; Thomas E. Willnow
ABSTRACT Corticosteroid binding globulin (CBG) is the carrier for glucocorticoids in plasma. The protein is believed to keep the steroids inactive and to regulate the amount of free hormone acting on target tissues (free hormone hypothesis). Here, we generated a mouse model genetically deficient for CBG to test the contribution of the carrier to glucocorticoid action and adrenocortical stress response. The absence of CBG resulted in a lack of corticosterone binding activity in serum and in an ∼10-fold increase in free corticosterone levels in CBG-null mice, consistent with its role in regulation of circulating free hormone levels. Surprisingly, cbg−/− animals did not exhibit features seen in organisms with enhanced glucocorticoid signaling. Rather, the mice exhibited increased activity of the pituitary axis of hormonal control, normal levels of gluconeogenetic enzymes, and fatigue, as well as an aggravated response to septic shock, indicating an inability to appropriately respond to the excess free corticosterone in the absence of CBG. Thus, our data suggest an active role for CBG in bioavailability, local delivery, and/or cellular signal transduction of glucocorticoids that extends beyond a function as a mere cargo transporter.
American Journal of Physiology-renal Physiology | 2010
Constanze Will; Tilman Breiderhoff; Julia Thumfart; Marchel Stuiver; Kathrin Kopplin; Kerstin Sommer; Dorothee Günzel; Uwe Querfeld; Iwan C. Meij; Qixian Shan; Markus Bleich; Thomas E. Willnow; Dominik Müller
Claudin-16 (CLDN16) is critical for renal paracellular epithelial transport of Ca(2+) and Mg(2+) in the thick ascending loop of Henle. To gain novel insights into the role of CLDN16 in renal Ca(2+) and Mg(2+) homeostasis and the pathological mechanisms underlying a human disease associated with CLDN16 dysfunction [familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), OMIM 248250], we generated a mouse model of CLDN16 deficiency. Similar to patients, CLDN16-deficient mice displayed hypercalciuria and hypomagnesemia. Contrary to FHHNC patients, nephrocalcinosis was absent in our model, indicating the existence of compensatory pathways in ion handling in this model. In line with the renal loss of Ca(2+), compensatory mechanisms like parathyroid hormone and 1,25(OH)(2)D(3) were significantly elevated. Also, gene expression profiling revealed transcriptional upregulation of several Ca(2+) and Mg(2+) transport systems including Trpv5, Trpm6, and calbindin-D9k. Induced gene expression was also seen for the transcripts of two putative Mg(2+) transport proteins, Cnnm2 and Atp13a4. Moreover, urinary pH was significantly lower when compared with wild-type mice. Taken together, our findings demonstrate that loss of CLDN16 activity leads to specific alterations in Ca(2+) and Mg(2+) homeostasis and that CLDN16-deficient mice represent a useful model to further elucidate pathways involved in renal Ca(2+) and Mg(2+) handling.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Tilman Breiderhoff; Nina Himmerkus; Marchel Stuiver; Kerim Mutig; Constanze Will; Iwan C. Meij; S. Bachmann; Markus Bleich; Thomas E. Willnow; Dominik Müller
In the kidney, tight junction proteins contribute to segment specific selectivity and permeability of paracellular ion transport. In the thick ascending limb (TAL) of Henles loop, chloride is reabsorbed transcellularly, whereas sodium reabsorption takes transcellular and paracellular routes. TAL salt transport maintains the concentrating ability of the kidney and generates a transepithelial voltage that drives the reabsorption of calcium and magnesium. Thus, functionality of TAL ion transport depends strongly on the properties of the paracellular pathway. To elucidate the role of the tight junction protein claudin-10 in TAL function, we generated mice with a deletion of Cldn10 in this segment. We show that claudin-10 determines paracellular sodium permeability, and that its loss leads to hypermagnesemia and nephrocalcinosis. In isolated perfused TAL tubules of claudin-10–deficient mice, paracellular permeability of sodium is decreased, and the relative permeability of calcium and magnesium is increased. Moreover, furosemide-inhibitable transepithelial voltage is increased, leading to a shift from paracellular sodium transport to paracellular hyperabsorption of calcium and magnesium. These data identify claudin-10 as a key factor in control of cation selectivity and transport in the TAL, and deficiency in this pathway as a cause of nephrocalcinosis.
Immunity | 2012
Stefanie Herda; Friederike Raczkowski; Hans-Willi Mittrücker; Gerald Willimsky; Kerstin Gerlach; Anja A. Kühl; Tilman Breiderhoff; Thomas E. Willnow; Bernd Dörken; Uta E. Höpken; Armin Rehm
Immunological control of infections or tumors depends on the release of effector cytokines and polarized secretion of cytotoxic granules from T cells and natural killer cells. Here we show that the sorting receptor Sortilin controlled both processes. In murine Sortilin-deficient cytotoxic T lymphocytes, regulated secretion of granzyme A and cytotoxic killing was enhanced and correlated with increased vesicle-associated membrane protein 7 availability. In contrast, loss of Sortilin reduced the release of interferon-γ upon infections and in autoimmune colitis. Exit of interferon-γ from the Golgi apparatus required the presence of Sortilin. Furthermore, we tracked the transport route of interferon-γ beyond this Sortilin-dependent Golgi to early endosome step. In wild-type T cells, trafficking of interferon-γ from the endosomal sorting platform to the plasma membrane proceeded independently of recycling endosomes, and interferon-γ remained excluded from late endosomes. Our results suggest that Sortilin modulates systemic immune responses through exocytic sorting of immunological effector molecules.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Susanne Milatz; Nina Himmerkus; Vera Christine Wulfmeyer; Hoora Drewell; Kerim Mutig; Jianghui Hou; Tilman Breiderhoff; Dominik Müller; Michael Fromm; Markus Bleich; Dorothee Günzel
Significance The thick ascending limb (TAL) of Henle’s loop is a nephron segment that reabsorbs Na+, Ca2+, and Mg2+ via the paracellular pathway, the tight junction (TJ). TJ permeability is regulated by claudin proteins. We show that the TAL expresses claudins cldn3, cldn10b, cldn16, and cldn19 in a TJ mosaic pattern with cldn3/cldn16/cldn19 in a complex and cldn10b alone. This mutual exclusiveness is facilitated by different claudin interaction properties. TJs with cldn10b favor Na+ over Mg2+, whereas TJs with cldn3/cldn16/cldn19 prefer Mg2+ over Na+. Hence we conclude that mono- and divalent cations in the TAL take different paracellular routes, and their reabsorption can be regulated independently. This spatial separation is important for renal ion homeostasis and its discovery improves our understanding of paracellular transport organization. The thick ascending limb (TAL) of Henle’s loop drives paracellular Na+, Ca2+, and Mg2+ reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes. The claudins Cldn10b, -16, and -19 facilitate cation reabsorption in the TAL, and their absence leads to a severe disturbance of renal ion homeostasis. We combined electrophysiological measurements on microperfused mouse TAL segments with subsequent analysis of claudin expression by immunostaining and confocal microscopy. Claudin interaction properties were examined using heterologous expression in the TJ-free cell line HEK 293, live-cell imaging, and Förster/FRET. To reveal determinants of interaction properties, a set of TAL claudin protein chimeras was created and analyzed. Our main findings are that (i) TAL TJs show a mosaic expression pattern of either cldn10b or cldn3/cldn16/cldn19 in a complex; (ii) TJs dominated by cldn10b prefer Na+ over Mg2+, whereas TJs dominated by cldn16 favor Mg2+ over Na+; (iii) cldn10b does not interact with other TAL claudins, whereas cldn3 and cldn16 can interact with cldn19 to form joint strands; and (iv) further claudin segments in addition to ECS2 are crucial for trans interaction. We suggest the existence of at least two spatially distinct types of paracellular channels in TAL: a cldn10b-based channel for monovalent cations such as Na+ and a spatially distinct site for reabsorption of divalent cations such as Ca2+ and Mg2+.
PLOS ONE | 2013
Tilman Breiderhoff; Gitte B. Christiansen; Lone Tjener Pallesen; Christian Bjerggaard Vaegter; Anders Nykjaer; Mai Marie Holm; Simon Glerup; Thomas E. Willnow
SORCS3 is an orphan receptor of the VPS10P domain receptor family, a group of sorting and signaling receptors central to many pathways in control of neuronal viability and function. SORCS3 is highly expressed in the CA1 region of the hippocampus, but the relevance of this receptor for hippocampal activity remained absolutely unclear. Here, we show that SORCS3 localizes to the postsynaptic density and that loss of receptor activity in gene-targeted mice abrogates NMDA receptor-dependent and -independent forms of long-term depression (LTD). Consistent with a loss of synaptic retraction, SORCS3-deficient mice suffer from deficits in behavioral activities associated with hippocampal LTD, particularly from an accelerated extinction of fear memory. A possible molecular mechanism for SORCS3 in synaptic depression was suggested by targeted proteomics approaches that identified the ability of SORCS3 to functionally interact with PICK1, an adaptor that sorts glutamate receptors at the postsynapse. Faulty localization of PICK1 in SORCS3-deficient neurons argues for altered glutamate receptor trafficking as the cause of altered synaptic plasticity in the SORCS3-deficient mouse model. In conclusion, our studies have identified a novel function for VPS10P domain receptors in control of synaptic depression and suggest SORCS3 as a novel factor modulating aversive memory extinction.