Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas F. Jaramillo is active.

Publication


Featured researches published by Thomas F. Jaramillo.


Journal of the American Chemical Society | 2013

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

Charles C. L. McCrory; Suho Jung; Jonas C. Peters; Thomas F. Jaramillo

Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm(-2) per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoO(x), CoPi, CoFeO(x), NiO(x), NiCeO(x), NiCoO(x), NiCuO(x), NiFeO(x), and NiLaO(x). The oxygen-evolving activity of an electrodeposited IrO(x) catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm(-2) current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrO(x) was unstable under oxidative conditions in acidic solutions.


Nature Materials | 2012

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis

Jakob Kibsgaard; Zhebo Chen; Benjamin N. Reinecke; Thomas F. Jaramillo

Controlling surface structure at the atomic scale is paramount to developing effective catalysts. For example, the edge sites of MoS(2) are highly catalytically active and are thus preferred at the catalyst surface over MoS(2) basal planes, which are inert. However, thermodynamics favours the presence of the basal plane, limiting the number of active sites at the surface. Herein, we engineer the surface structure of MoS(2) to preferentially expose edge sites to effect improved catalysis by successfully synthesizing contiguous large-area thin films of a highly ordered double-gyroid MoS(2) bicontinuous network with nanoscaled pores. The high surface curvature of this catalyst mesostructure exposes a large fraction of edge sites, which, along with its high surface area, leads to excellent activity for electrocatalytic hydrogen evolution. This work elucidates how morphological control of materials at the nanoscale can significantly impact the surface structure at the atomic scale, enabling new opportunities for enhancing surface properties for catalysis and other important technological applications.


Nature Chemistry | 2009

Alloys of platinum and early transition metals as oxygen reduction electrocatalysts

Jeffrey Greeley; Ifan E. L. Stephens; Alexander S. Bondarenko; Tobias Peter Johansson; Heine Anton Hansen; Thomas F. Jaramillo; Jan Rossmeisl; Ib Chorkendorff; Jens K. Nørskov

The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V.


Journal of the American Chemical Society | 2010

A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation

Yelena Gorlin; Thomas F. Jaramillo

There is a growing interest in oxygen electrochemistry as conversions between O(2) and H(2)O play an important role in a variety of renewable energy technologies. The goal of this work is to develop active bifunctional catalyst materials for water oxidation and oxygen reduction. Drawing inspiration from a cubane-like CaMn(4)O(x), the biological catalyst found in the oxygen evolving center (OEC) in photosystem II, nanostructured manganese oxide surfaces were investigated for these reactions. Thin films of nanostructured manganese oxide were found to be active for both oxygen reduction and water oxidation, with similar overall oxygen electrode activity to the best known precious metal nanoparticle catalysts: platinum, ruthenium, and iridium. Physical and chemical characterization of the nanostructured Mn oxide bifunctional catalyst reveals an oxidation state of Mn(III), akin to one of the most commonly observed Mn oxidation states found in the OEC.


Chemcatchem | 2011

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces

Isabela C. Man; Hai-Yan Su; Federico Calle-Vallejo; Heine A. Hansen; José I. Martínez; Nilay İnoğlu; John R. Kitchin; Thomas F. Jaramillo; Jens K. Nørskov; Jan Rossmeisl

Trends in electrocatalytic activity of the oxygen evolution reaction (OER) are investigated on the basis of a large database of HO* and HOO* adsorption energies on oxide surfaces. The theoretical overpotential was calculated by applying standard density functional theory in combination with the computational standard hydrogen electrode (SHE) model. We showed that by the discovery of a universal scaling relation between the adsorption energies of HOO* vs HO*, it is possible to analyze the reaction free energy diagrams of all the oxides in a general way. This gave rise to an activity volcano that was the same for a wide variety of oxide catalyst materials and a universal descriptor for the oxygen evolution activity, which suggests a fundamental limitation on the maximum oxygen evolution activity of planar oxide catalysts.


Journal of the American Chemical Society | 2015

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices

Charles C. L. McCrory; Suho Jung; Ivonne M. Ferrer; Shawn M. Chatman; Jonas C. Peters; Thomas F. Jaramillo

Objective comparisons of electrocatalyst activity and stability using standard methods under identical conditions are necessary to evaluate the viability of existing electrocatalysts for integration into solar-fuel devices as well as to help inform the development of new catalytic systems. Herein, we use a standard protocol as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 electrocatalysts for the hydrogen evolution reaction (HER) and 26 electrocatalysts for the oxygen evolution reaction (OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution. Our primary figure of merit is the overpotential necessary to achieve a magnitude current density of 10 mA cm(-2) per geometric area, the approximate current density expected for a 10% efficient solar-to-fuels conversion device under 1 sun illumination. The specific activity per ECSA of each material is also reported. Among HER catalysts, several could operate at 10 mA cm(-2) with overpotentials <0.1 V in acidic and/or alkaline solutions. Among OER catalysts in acidic solution, no non-noble metal based materials showed promising activity and stability, whereas in alkaline solution many OER catalysts performed with similar activity achieving 10 mA cm(-2) current densities at overpotentials of ~0.33-0.5 V. Most OER catalysts showed comparable or better specific activity per ECSA when compared to Ir and Ru catalysts in alkaline solutions, while most HER catalysts showed much lower specific activity than Pt in both acidic and alkaline solutions. For select catalysts, additional secondary screening measurements were conducted including Faradaic efficiency and extended stability measurements.


Nano Letters | 2011

Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials

Zhebo Chen; Dustin R. Cummins; Benjamin N. Reinecke; Ezra L. Clark; Mahendra K. Sunkara; Thomas F. Jaramillo

We synthesize vertically oriented core-shell nanowires with substoichiometric MoO(3) cores of ∼20-50 nm and conformal MoS(2) shells of ∼2-5 nm. The core-shell architecture, produced by low-temperature sulfidization, is designed to utilize the best properties of each component material while mitigating their deficiencies. The substoichiometric MoO(3) core provides a high aspect ratio foundation and enables facile charge transport, while the conformal MoS(2) shell provides excellent catalytic activity and protection against corrosion in strong acids.


Journal of Materials Research | 2010

Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols

Zhebo Chen; Thomas F. Jaramillo; Todd Deutsch; Alan Kleiman-Shwarsctein; Arnold J. Forman; Nicolas Gaillard; Roxanne Garland; Kazuhiro Takanabe; C. Heske; Mahendra K. Sunkara; Eric W. McFarland; Kazunari Domen; Eric L. Miller; John A. Turner; Huyen N. Dinh

Photoelectrochemical (PEC) water splitting for hydrogen production is a promising technology that uses sunlight and water to produce renewable hydrogen with oxygen as a by-product. In the expanding field of PEC hydrogen production, the use of standardized


Nano Letters | 2011

Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production

In Sun Cho; Zhebo Chen; Arnold J. Forman; Dong Rip Kim; Pratap M. Rao; Thomas F. Jaramillo; Xiaolin Zheng

We report a hierarchically branched TiO(2) nanorod structure that serves as a model architecture for efficient photoelectrochemical devices as it simultaneously offers a large contact area with the electrolyte, excellent light-trapping characteristics, and a highly conductive pathway for charge carrier collection. Under Xenon lamp illumination (UV spectrum matched to AM 1.5G, 88 mW/cm(2) total power density), the branched TiO(2) nanorod array produces a photocurrent density of 0.83 mA/cm(2) at 0.8 V versus reversible hydrogen electrode (RHE). The incident photon-to-current conversion efficiency reaches 67% at 380 nm with an applied bias of 0.6 V versus RHE, nearly two times higher than the bare nanorods without branches. The branches improve efficiency by means of (i) improved charge separation and transport within the branches due to their small diameters, and (ii) a 4-fold increase in surface area which facilitates the hole transfer at the TiO(2)/electrolyte interface.


Science | 2017

Combining theory and experiment in electrocatalysis: Insights into materials design

Zhi Wei Seh; Jakob Kibsgaard; Colin F. Dickens; Ib Chorkendorff; Jens K. Nørskov; Thomas F. Jaramillo

Better living through water-splitting Chemists have known how to use electricity to split water into hydrogen and oxygen for more than 200 years. Nonetheless, because the electrochemical route is inefficient, most of the hydrogen made nowadays comes from natural gas. Seh et al. review recent progress in electrocatalyst development to accelerate water-splitting, the reverse reactions that underlie fuel cells, and related oxygen, nitrogen, and carbon dioxide reductions. A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other. Science, this issue p. 10.1126/science.aad4998 BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future. Electrochemical energy conversion. Schematic showing electrochemical conversion of water, carbon dioxide, and nitrogen into value-added products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia), using energy from renewable sources. The combination of theoretical and experimental studies working in concert provides us with insight into these electrochemical transformations and guides the development of the high-performance electrocatalysts needed to enable these technologies. Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. We conclude by extending this framework to emerging clean energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.

Collaboration


Dive into the Thomas F. Jaramillo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge