Jesse D. Benck
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesse D. Benck.
Energy and Environmental Science | 2013
Blaise A. Pinaud; Jesse D. Benck; Linsey C. Seitz; Arnold J. Forman; Zhebo Chen; Todd Deutsch; Brian D. James; Kevin N. Baum; George Newell Baum; Shane Ardo; Heli Wang; Eric L. Miller; Thomas F. Jaramillo
Photoelectrochemical water splitting is a promising route for the renewable production of hydrogen fuel. This work presents the results of a technical and economic feasibility analysis conducted for four hypothetical, centralized, large-scale hydrogen production plants based on this technology. The four reactor types considered were a single bed particle suspension system, a dual bed particle suspension system, a fixed panel array, and a tracking concentrator array. The current performance of semiconductor absorbers and electrocatalysts were considered to compute reasonable solar-to-hydrogen conversion efficiencies for each of the four systems. The U.S. Department of Energy H2A model was employed to calculate the levelized cost of hydrogen output at the plant gate at 300 psi for a 10 tonne per day production scale. All capital expenditures and operating costs for the reactors and auxiliaries (compressors, control systems, etc.) were considered. The final cost varied from
Journal of the American Chemical Society | 2013
Yelena Gorlin; Benedikt Lassalle-Kaiser; Jesse D. Benck; Sheraz Gul; Samuel M. Webb; Vittal K. Yachandra; Junko Yano; Thomas F. Jaramillo
1.60–
Energy and Environmental Science | 2015
Jakob Kibsgaard; Charlie Tsai; Karen Chan; Jesse D. Benck; Jens K. Nørskov; Frank Abild-Pedersen; Thomas F. Jaramillo
10.40 per kg H2 with the particle bed systems having lower costs than the panel-based systems. However, safety concerns due to the cogeneration of O2 and H2 in a single bed system and long molecular transport lengths in the dual bed system lead to greater uncertainty in their operation. A sensitivity analysis revealed that improvement in the solar-to-hydrogen efficiency of the panel-based systems could substantially drive down their costs. A key finding is that the production costs are consistent with the Department of Energys targeted threshold cost of
Journal of the American Chemical Society | 2014
Yelena Gorlin; Chia-Jung Chung; Jesse D. Benck; Dennis Nordlund; Linsey C. Seitz; Tsu-Chien Weng; Dimosthenis Sokaras; Bruce M. Clemens; Thomas F. Jaramillo
2.00–
Chemsuschem | 2014
Linsey C. Seitz; Zhebo Chen; Arnold J. Forman; Blaise A. Pinaud; Jesse D. Benck; Thomas F. Jaramillo
4.00 per kg H2 for dispensed hydrogen, demonstrating that photoelectrochemical water splitting could be a viable route for hydrogen production in the future if material performance targets can be met.
Nature Communications | 2016
Jieyang Jia; Linsey C. Seitz; Jesse D. Benck; Yijie Huo; Yusi Chen; Jia Wei Desmond Ng; Taner Bilir; James S. Harris; Thomas F. Jaramillo
In situ X-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs RHE produces a disordered Mn3(II,III,III)O4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed Mn(III,IV) oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3(II,III,III)O4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the Mn(III,IV) oxide, rather than Mn3(II,III,III)O4, is the phase pertinent to the observed OER activity.
PLOS ONE | 2014
Jesse D. Benck; Blaise A. Pinaud; Yelena Gorlin; Thomas F. Jaramillo
Transition metal phosphides (TMPs) have emerged as highly active catalysts for the hydrogen evolution reaction (HER). However, insights into the trends and limitations in their activity are lacking, and there are presently no guidelines for systematically improving their intrinsic activity. The complexity and variations in their structures further pose challenges in theoretically estimating their activity. Herein, we demonstrate a combined experimental–theoretical approach: by synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔGH, calculated by density functional theory, we determine the level of detail needed in the simulations to bring out useful trends in the experimental data. In particular, we show that the TMPs follow the HER volcano relationship. Using our combined experimental–theoretical model, we predict that the mixed metal TMP, Fe0.5Co0.5P, should have a near-optimal ΔGH. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe0.5Co0.5P exhibits the highest HER activity of the investigated TMPs. Furthermore, our results suggest that there could be inherent limitations in the intrinsic HER activity of TMPs that prevent them from performing as well as Pt-group metals. Our work demonstrates that it is possible to generate and verify a model of activity trends with predictive capabilities even for new transition metal compounds with varied structures and surface terminations. The identification of an improved mixed metal TMP based on theoretical predictions and subsequent synthesis and testing demonstrates the need for an approach that combines theory and experiment to understand and ultimately design advanced catalysts.
ACS Nano | 2016
Sang-Chul Lee; Jesse D. Benck; Charlie Tsai; Joonsuk Park; Ai Leen Koh; Frank Abild-Pedersen; Thomas F. Jaramillo; Robert Sinclair
To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx.
Journal of Physical Chemistry Letters | 2016
Reuben J Britto; Jesse D. Benck; James L. Young; Christopher Hahn; Todd Deutsch; Thomas F. Jaramillo
Photoelectrochemical (PEC) water splitting is a means to store solar energy in the form of hydrogen. Knowledge of practical limits for this process can help researchers assess their technology and guide future directions. We develop a model to quantify loss mechanisms in PEC water splitting based on the current state of materials research and calculate maximum solar-to-hydrogen (STH) conversion efficiencies along with associated optimal absorber band gaps. Various absorber configurations are modeled considering the major loss mechanisms in PEC devices. Quantitative sensitivity analyses for each loss mechanism and each absorber configuration show a profound impact of both on the resulting STH efficiencies, which can reach upwards of 25 % for the highest performance materials in a dual stacked configuration. Higher efficiencies could be reached as improved materials are developed. The results of the modeling also identify and quantify approaches that can improve system performance when working with imperfect materials.
Chemsuschem | 2015
Jia Wei Desmond Ng; Thomas R. Hellstern; Jakob Kibsgaard; Allison C. Hinckley; Jesse D. Benck; Thomas F. Jaramillo
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.