Thomas Guillemette
University of Angers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Guillemette.
Nature Biotechnology | 2007
Herman Jan Pel; Johannes H. de Winde; David B. Archer; Paul S. Dyer; Gerald Hofmann; Peter J. Schaap; Geoffrey Turner; Ronald P. de Vries; Richard Albang; Kaj Albermann; Mikael Rørdam Andersen; Jannick Dyrløv Bendtsen; Jacques A. E. Benen; Marco van den Berg; Stefaan Breestraat; Mark X. Caddick; Roland Contreras; Michael Cornell; Pedro M. Coutinho; Etienne Danchin; Alfons J. M. Debets; Peter Dekker; Piet W.M. van Dijck; Alard Van Dijk; Lubbert Dijkhuizen; Arnold J. M. Driessen; Christophe d'Enfert; Steven Geysens; Coenie Goosen; Gert S.P. Groot
The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis.
Plant Disease | 2004
Thomas Guillemette; Béatrice Iacomi-Vasilescu; Philippe Simoneau
Alternaria brassicae is an important seedborne pathogenic fungus responsible for the black spot disease of crucifers. Sanitary control of commercial seed is necessary to limit the spread of this pathogen. Current detection methods, based on culture and morphological identification of the fungus, are time consuming, laborious, and not always reliable. Therefore, a polymerase chain reaction (PCR)-based assay was developed with A. brassicae-specific primers designed on the basis of the sequence of two clustered genes potentially involved in pathogenicity. Two sets of primers were selected for conventional and real-time PCR, respectively. In both cases, A. brassicae was specifically detected using DNA extracted from seed. The real-time PCR-based method presented here can be automated easily and preliminary results indicate that it is efficient for quantitative estimation of seed infection.
Molecular Plant Pathology | 2007
Adnane Sellam; Anita Dongo; Thomas Guillemette; Piétrick Hudhomme; Philippe Simoneau
SUMMARY Alternaria brassicicola is the causative agent of black spot disease of Brassicaceae belonging to the genera Brassica and Raphanus. During host infection, A. brassicicola is exposed to high levels of antimicrobial defence compounds such as indolic phytoalexins and glucosinolate breakdown products. To investigate the transcriptomic response of A. brassicicola when challenged with brassicaceous defence metabolites, suppression subtractive hybridization (SSH) was performed to generate two cDNA libraries from germinated conidia treated either with allyl isothiocyanate (Al-ITC) or with camalexin. Following exposure to Al-ITC, A. brassicicola displayed a response similar to that experienced during oxidative stress. Indeed, a substantial subset of differentially expressed genes was related to cell protection against oxidative damage. Treatment of A. brassicicola conidia with the phytoalexin camalexin appeared to activate a compensatory mechanism to preserve cell membrane integrity and, among the camalexin-elicited genes, several were involved in sterol and sphingolipid biosynthesis. The transcriptomic analysis suggested that protection against the two tested compounds also involved mechanisms aimed at limiting their intracellular accumulation, such as melanin biosynthesis (in the case of camalexin exposure only) and drug efflux. From the Al-ITC and the camalexin differentially expressed genes identified here, 25 were selected to perform time-course studies during interactions with brassicaceous hosts. In planta, up-regulation of all the selected genes was observed during infection of Raphanus sativus whereas only a subset were over-expressed during the incompatible interaction with Arabidopsis thaliana ecotype Columbia.
Cellular Microbiology | 2011
Aymeric Joubert; Nelly Bataillé-Simoneau; Claire Campion; Thomas Guillemette; Piétrick Hudhomme; Béatrice Iacomi-Vasilescu; Thibault Leroy; Stéphanie Pochon; Pascal Poupard; Philippe Simoneau
Camalexin, the characteristic phytoalexin of Arabidopsis thaliana, inhibits growth of the fungal necrotroph Alternaria brassicicola. This plant metabolite probably exerts its antifungal toxicity by causing cell membrane damage. Here we observed that activation of a cellular response to this damage requires cell wall integrity (CWI) and the high osmolarity glycerol (HOG) pathways. Camalexin was found to activate both AbHog1 and AbSlt2 MAP kinases, and activation of the latter was abrogated in a AbHog1 deficient strain. Mutant strains lacking functional MAP kinases showed hypersensitivity to camalexin and brassinin, a structurally related phytoalexin produced by several cultivated Brassica species. Enhanced susceptibility to the membrane permeabilization activity of camalexin was observed for MAP kinase deficient mutants. These results suggest that the two signalling pathways have a pivotal role in regulating a cellular compensatory response to preserve cell integrity during exposure to camalexin. AbHog1 and AbSlt2 deficient mutants had reduced virulence on host plants that may, at least for the latter mutants, partially result from their inability to cope with defence metabolites such as indolic phytoalexins. This constitutes the first evidence that a phytoalexin activates fungal MAP kinases and that outputs of activated cascades contribute to protecting the fungus against antimicrobial plant metabolites.
Applied and Environmental Microbiology | 2009
Anita Dongo; Nelly Bataillé-Simoneau; Claire Campion; Thomas Guillemette; Bruno Hamon; Béatrice Iacomi-Vasilescu; Leonard Katz; Philippe Simoneau
ABSTRACT We have shown that the plant pathogen Alternaria brassicicola exhibited very high susceptibility to ambruticin VS4 and to a lesser extent to the phenylpyrrole fungicide fludioxonil. These compounds are both derived from natural bacterial metabolites with antifungal properties and are thought to exert their toxicity by interfering with osmoregulation in filamentous fungi. Disruption of the osmosensor group III histidine kinase gene AbNIK1 (for A. brassicola NIK1) resulted in high levels of resistance to ambruticin and fludioxonil, while a mutant isolate characterized by a single-amino-acid substitution in the HAMP domain of the kinase only exhibited moderate resistance. Moreover, the natural resistance of Saccharomyces cerevisiae to these antifungal molecules switched to sensitivity in strains expressing AbNIK1p. We also showed that exposure to fludioxonil and ambruticin resulted in abnormal phosphorylation of a Hog1-like mitogen-activated protein kinase (MAPK) in A. brassicicola. Parallel experiments carried out with wild-type and mutant isolates of Neurospora crassa revealed that, in this species, ambruticin susceptibility was dependent on the OS1-RRG1 branch of the phosphorelay pathway downstream of the OS2 MAPK cascade but independent of the yeast Skn7-like response regulator RRG2. These results show that the ability to synthesize a functional group III histidine kinase is a prerequisite for the expression of ambruticin and phenylpyrrole susceptibility in A. brassicicola and N. crassa and that, at least in the latter species, improper activation of the high-osmolarity glycerol-related pathway could explain their fungicidal properties.
Phytochemistry | 2013
Matthieu Gaucher; Thomas Dugé de Bernonville; David Lohou; Sylvain Guyot; Thomas Guillemette; Marie-Noëlle Brisset; James F. Dat
Flavonoids, like other metabolites synthesized via the phenylpropanoid pathway, possess a wide range of biological activities including functions in plant development and its interaction with the environment. Dihydrochalcones (mainly phloridzin, sieboldin, trilobatin, phloretin) represent the major flavonoid subgroup in apple green tissues. Although this class of phenolic compounds is found in very large amounts in some tissues (≈200mg/g of leaf DW), their physiological significance remains unclear. In the present study, we highlight their tissue-specific localization in young growing shoots suggesting a specific role in important physiological processes, most notably in response to biotic stress. Indeed, dihydrochalcones could constitute a basal defense, in particular phloretin which exhibits a strong broad-range bactericidal and fungicidal activity. Our results also indicate that sieboldin forms complexes with iron with strong affinity, reinforcing its antioxidant properties and conferring to this dihydrochalcone a potential for iron seclusion and/or storage. The importance of localization and biochemical properties of dihydrochalcones are discussed in view of the apple tree defense strategy against both biotic and abiotic stresses.
BioTechniques | 2010
Aymeric Joubert; Benoît Calmes; Romain Berruyer; Marc Pihet; Jean-Philippe Bouchara; Philippe Simoneau; Thomas Guillemette
By contrast with photometry (i.e., the measurement of light transmitted through a particle suspension), nephelometry is a direct method of measuring light scattered by particles in suspension. Since the scattered light intensity is directly proportional to the suspended particle concentration, nephelometry is a promising method for recording microbial growth and especially for studying filamentous fungi, which cannot be efficiently investigated through spectrophotometric assays. We describe herein for the first time a filamentous fungi-tailored procedure based on microscale liquid cultivation and automated nephelometric recording of growth, followed by extraction of relevant variables (lag time and growth rate) from the obtained growth curves. This microplate reader technique is applicable for the evaluation of antifungal activity and for large-scale phenotypic profiling.
Frontiers in Plant Science | 2013
Benoît Calmes; Thomas Guillemette; Lény Teyssier; Benjamin Siegler; Sandrine Pigné; Anne Landreau; Béatrice Iacomi; Rémi Lemoine; Pascal Richomme; Philippe Simoneau
In this study, the physiological functions of fungal mannitol metabolism in the pathogenicity and protection against environmental stresses were investigated in the necrotrophic fungus Alternaria brassicicola. Mannitol metabolism was examined during infection of Brassica oleracea leaves by sequential HPLC quantification of the major soluble carbohydrates and expression analysis of genes encoding two proteins of mannitol metabolism, i.e., a mannitol dehydrogenase (AbMdh), and a mannitol-1-phosphate dehydrogenase (AbMpd). Knockout mutants deficient for AbMdh or AbMpd and a double mutant lacking both enzyme activities were constructed. Their capacity to cope with various oxidative and drought stresses and their pathogenic behavior were evaluated. Metabolic and gene expression profiling indicated an increase in mannitol production during plant infection. Depending on the mutants, distinct pathogenic processes, such as leaf and silique colonization, sporulation, survival on seeds, were impaired by comparison to the wild-type. This pathogenic alteration could be partly explained by the differential susceptibilities of mutants to oxidative and drought stresses. These results highlight the importance of mannitol metabolism with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle.
Biochimica et Biophysica Acta | 2014
Agata Zykwinska; Thomas Guillemette; Jean-Philippe Bouchara; Stéphane Cuenot
Hydrophobins are small surface active proteins secreted by filamentous fungi. Because of their ability to self-assemble at hydrophilic-hydrophobic interfaces, hydrophobins play a key role in fungal growth and development. In the present work, the organization in aqueous solution of SC3 hydrophobins from the fungus Schizophyllum commune was assessed using Dynamic Light Scattering, Atomic Force Microscopy and fluorescence spectroscopy. These complementary approaches have demonstrated that SC3 hydrophobins are able not only to spontaneously self-assemble at the air-water interface but also in pure water. AFM experiments evidenced that hydrophobins self-assemble in solution into nanorods. Fluorescence assays with thioflavin T allowed establishing that the mechanism governing SC3 hydrophobin self-assembly into nanorods involves β-sheet stacking. SC3 assembly was shown to be strongly influenced by ionic strength and solution pH. The presence of a very low ionic strength significantly favoured the protein self-assembly but a further increase of ions in solution disrupted the protein assembly. It was assessed that solution pH had a significant effect on the SC3 hydrophobins organization. In peculiar, the self-assembly process was considerably reduced at acidic pH. Our findings demonstrate that the self-assembly of SC3 hydrophobins into nanorods of well-defined length can be directly controlled in solution. Such control allows opening the way for the development of new smart self-assembled structures for targeted applications.
Frontiers in Plant Science | 2015
Benoît Calmes; Guillaume N’Guyen; Jérôme Dumur; Carlos A. Brisach; Claire Campion; Béatrice Iacomi; Sandrine Pigné; Eva Dias; David Macherel; Thomas Guillemette; Philippe Simoneau
Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.