Thomas H. P. Harvey
University of Leicester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas H. P. Harvey.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Thomas H. P. Harvey; M.I. Vélez; Nicholas J. Butterfield
The early history of crustaceans is obscured by strong biases in fossil preservation, but a previously overlooked taphonomic mode yields important complementary insights. Here we describe diverse crustacean appendages of Middle and Late Cambrian age from shallow-marine mudstones of the Deadwood Formation in western Canada. The fossils occur as flattened and fragmentary carbonaceous cuticles but provide a suite of phylogenetic and ecological data by virtue of their detailed preservation. In addition to an unprecedented range of complex, largely articulated filtering limbs, we identify at least four distinct types of mandible. Together, these fossils provide the earliest evidence for crown-group branchiopods and total-group copepods and ostracods, extending the respective ranges of these clades back from the Devonian, Pennsylvanian, and Ordovician. Detailed similarities with living forms demonstrate the early origins and subsequent conservation of various complex food-handling adaptations, including a directional mandibular asymmetry that has persisted through half a billion years of evolution. At the same time, the Deadwood fossils indicate profound secular changes in crustacean ecology in terms of body size and environmental distribution. The earliest radiation of crustaceans is largely cryptic in the fossil record, but “small carbonaceous fossils” reveal organisms of surprisingly modern aspect operating in an unfamiliar biosphere.
Nature | 2008
Thomas H. P. Harvey; Nicholas J. Butterfield
Most Cambrian arthropods employed simple feeding mechanisms requiring only low degrees of appendage differentiation. In contrast, post-Cambrian crustaceans exhibit a wide diversity of feeding specializations and possess a vast ecological repertoire. Crustaceans are evident in the Cambrian fossil record, but have hitherto been known exclusively from small individuals with limited appendage differentiation. Here we describe a sophisticated feeding apparatus from an Early Cambrian arthropod that had a body length of several centimetres. Details of the mouthparts resolve this taxon as a probable crown-group (pan)crustacean, while its feeding style, which allowed it to generate and handle fine food particles, significantly expands the known ecological capabilities of Cambrian arthropods. This Early Cambrian record predates the major expansions of large-bodied, particle-handling crustaceans by at least one hundred million years, emphasizing the importance of ecological context in driving adaptive radiations.
Geology | 2012
Nicholas J. Butterfield; Thomas H. P. Harvey
Use of a low-manipulation hydrofluoric acid-extraction procedure on Cambrian mudstones reveals an unexpectedly abundant and diverse range of small carbonaceous fossils (SCFs), primarily the disarticulated sclerites and cuticular fragments of animals. Relatively recalcitrant forms such as Wiwaxia sclerites and priapulid-like scalids are sufficiently common to yield a reasonably reliable biostratigraphic signal, unlike their rare macroscopic counterparts. Molluscan radulae, crustacean appendages, and the carbonaceous components of originally mineralized metazoan sclerites provide further insights into the histology, diversity, and distribution of early metazoans. The widespread occurrence of SCFs is due in part to their enhanced biostratinomic potential for transport, burial, and preservation, particularly in well-aerated epicratonic settings not represented by Burgess Shale–type macrofossils. More generally, the SCF record represents a largely untapped measure of ecological and evolutionary dynamics through the early Paleozoic.
Evolution & Development | 2010
Thomas H. P. Harvey; Xi-Ping Dong; Philip C. J. Donoghue
SUMMARY The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert‐bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem‐priapulid affinity, meaning that palaeoscolecids are far‐removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.
Acta Palaeontologica Polonica | 2012
Thomas H. P. Harvey; Javier Ortega-Hernández; Jih-Pai Lin; Zhao Yuanlong; Nicholas J. Butterfield
Diverse carbonaceous microfossils, including exceptionally preserved remains of non-biomineralizing metazoans, are reported from a basal middle Cambrian interval of the Kaili Formation (Guizhou Province, China). The application of a gentle acid maceration technique complements previous palynological studies by revealing a larger size-class of acritarchs, a richer assemblage of filamentous microfossils, and a variety of previously unrecovered forms. Metazoan fossils include Wiwaxia sclerites and elements derived from biomineralizing taxa, including chancelloriids, brachiopods and hyolithids, in common with previously studied assemblages from the early and middle Cambrian of Canada. In addition, the Kaili Formation has yielded pterobranch remains and an assemblage of cuticle fragments representing “soft-bodied” worms, including a priapulid-like scalidophoran. Our results demonstrate the wide distribution and palaeobiological importance of microscopic “Burgess Shale-type” fossils, and provide insights into the limitations and potential of this largely untapped preservational mode.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Jean-Bernard Caron; Martin Smith; Thomas H. P. Harvey
Burgess Shale-type deposits are renowned for their exquisite preservation of soft-bodied organisms, representing a range of animal body plans that evolved during the Cambrian ‘explosion’. However, the rarity of these fossil deposits makes it difficult to reconstruct the broader-scale distributions of their constituent organisms. By contrast, microscopic skeletal elements represent an extensive chronicle of early animal evolution—but are difficult to interpret in the absence of corresponding whole-body fossils. Here, we provide new observations on the dorsal spines of the Cambrian lobopodian (panarthropod) worm Hallucigenia sparsa from the Burgess Shale (Cambrian Series 3, Stage 5). These exhibit a distinctive scaly microstructure and layered (cone-in-cone) construction that together identify a hitherto enigmatic suite of carbonaceous and phosphatic Cambrian microfossils—including material attributed to Mongolitubulus, Rushtonites and Rhombocorniculum—as spines of Hallucigenia-type lobopodians. Hallucigeniids are thus revealed as an important and widespread component of disparate Cambrian communities from late in the Terreneuvian (Cambrian Stage 2) through the ‘middle’ Cambrian (Series 3); their apparent decline in the latest Cambrian may be partly taphonomic. The cone-in-cone construction of hallucigeniid sclerites is shared with the sclerotized cuticular structures (jaws and claws) in modern onychophorans. More generally, our results emphasize the reciprocal importance and complementary roles of Burgess Shale-type fossils and isolated microfossils in documenting early animal evolution.
Biology Letters | 2010
Thomas H. P. Harvey
Early fossil sponges offer a direct window onto the evolutionary emergence of animals, but insights are limited by the paucity of characters preserved in the conventional fossil record. Here, a new preservational mode for sponge spicules is reported from the lower Cambrian Forteau Formation (Newfoundland, Canada), prompting a re-examination of proposed homologies and sponge inter-relationships. The spicules occur as wholly carbonaceous films, and are interpreted as the remains of robust organic spicule sheaths. Comparable sheaths are restricted among living taxa to calcarean sponges, although the symmetries of the fossil spicules are characteristic of hexactinellid sponges. A similar extinct character combination has been documented in the Burgess Shale fossil Eiffelia. Interpreting the shared characters as homologous implies complex patterns of spicule evolution, but an alternative interpretation as convergent autapomorphies is more parsimonious. In light of the mutually exclusive distributions of these same characters among the crown groups, this result suggests that sponges exhibited an early episode of disparity expansion followed by comparatively constrained evolution, a pattern shared with many other metazoans but obscured by the conventional fossil record of sponges.
PALAIOS | 2013
Thomas H. P. Harvey; Brian E. Pedder
ABSTRACT The recent discovery of crustacean body parts among small carbonaceous fossils (SCFs) has expanded the known range of Cambrian arthropods to include comparatively derived taxa, including copepods. However, the potential for SCFs to reveal larger-scale patterns in Cambrian crustacean evolution has been unclear, because of the small number of known occurrences. Previously, Cambrian copepods were represented solely by isolated mandibles (jaws) from the Deadwood Formation of Saskatchewan, Canada (middle to late Cambrian; = Series 3 to Furongian). Herein we report a second occurrence of Cambrian copepod mandibles, of closely comparable morphology, from the approximately coeval Nolichucky Shale of Tennessee, United States. The Nolichucky specimens were recovered using standard palynological processing, whereas the larger and more articulated Deadwood specimens were recovered using a low-manipulation procedure designed for SCFs. The two datasets represent largely distinct but complementary views onto a taphonomic continuum. In general, larger and more delicate crustacean SCFs reveal phylogenetically and ecologically informative characters, but are likely to be restricted in space and time, and are often low in abundance. In contrast, robust fragments of the same body parts are more likely to be preserved and recovered, but may be unidentifiable in the absence of SCFs. Therefore, conventionally recovered palynomorphs can expand the utility of SCFs to offer a higher-fidelity account of broad-scale evolutionary patterns.
Nature Ecology and Evolution | 2017
Thomas H. P. Harvey; Nicholas J. Butterfield
Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.
Scientific Reports | 2015
Xianguang Hou; Mark Williams; David J. Siveter; Derek J. Siveter; Sarah E. Gabbott; David A. Holwell; Thomas H. P. Harvey
Nidelric pugio gen. et sp. nov. from the Cambrian Series 2 Heilinpu Formation, Chengjiang Lagerstätte, Yunnan Province, China, is an ovoid, sac-like metazoan that bears single-element spines on its surface. N. pugio shows no trace of a gut, coelom, anterior differentiation, appendages, or internal organs that would suggest a bilateral body plan. Instead, the sac-like morphology invites comparison with the radially symmetrical chancelloriids. However, the single-element spines of N. pugio are atypical of the complex multi-element spine rosettes borne by most chancelloriids and N. pugio may signal the ancestral chancelloriid state, in which the spines had not yet fused. Alternatively, N. pugio may represent a group of radial metazoans that are discrete from chancelloriids. Whatever its precise phylogenetic position, N. pugio expands the known disparity of Cambrian scleritome-bearing animals, and provides a new model for reconstructing scleritomes from isolated microfossils.