Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas H. Prettyman is active.

Publication


Featured researches published by Thomas H. Prettyman.


Science | 2012

Dawn at Vesta: Testing the Protoplanetary Paradigm

C. T. Russell; C.A. Raymond; Angioletta Coradini; Harry Y. McSween; Maria T. Zuber; A. Nathues; M.C. De Sanctis; R. Jaumann; Alexander S. Konopliv; Frank Preusker; Sami W. Asmar; Ryan S. Park; Robert W. Gaskell; H. U. Keller; S. Mottola; Thomas Roatsch; Jennifer E.C. Scully; David E. Smith; Pasquale Tricarico; Michael J. Toplis; Ulrich R. Christensen; William C. Feldman; D. J. Lawrence; Timothy J. McCoy; Thomas H. Prettyman; Robert C. Reedy; M. E. Sykes; Timothy N. Titus

A New Dawn Since 17 July 2011, NASAs spacecraft Dawn has been orbiting the asteroid Vesta—the second most massive and the third largest asteroid in the solar system (see the cover). Russell et al. (p. 684) use Dawns observations to confirm that Vesta is a small differentiated planetary body with an inner core, and represents a surviving proto-planet from the earliest epoch of solar system formation; Vesta is also confirmed as the source of the howardite-eucrite-diogenite (HED) meteorites. Jaumann et al. (p. 687) report on the asteroids overall geometry and topography, based on global surface mapping. Vestas surface is dominated by numerous impact craters and large troughs around the equatorial region. Marchi et al. (p. 690) report on Vestas complex cratering history and constrain the age of some of its major regions based on crater counts. Schenk et al. (p. 694) describe two giant impact basins located at the asteroids south pole. Both basins are young and excavated enough amounts of material to form the Vestoids—a group of asteroids with a composition similar to that of Vesta—and HED meteorites. De Sanctis et al. (p. 697) present the mineralogical characterization of Vesta, based on data obtained by Dawns visual and infrared spectrometer, revealing that this asteroid underwent a complex magmatic evolution that led to a differentiated crust and mantle. The global color variations detailed by Reddy et al. (p. 700) are unlike those of any other asteroid observed so far and are also indicative of a preserved, differentiated proto-planet. Spacecraft data provide a detailed characterization of the second most massive asteroid in the solar system. The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta’s south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta’s crust by melting of a chondritic parent body. Vesta’s mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawns results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.


Science | 2012

Vesta's shape and morphology

R. Jaumann; David A. Williams; D.L. Buczkowski; R. A. Yingst; Frank Preusker; Harald Hiesinger; N. Schmedemann; T. Kneissl; Jean-Baptiste Vincent; David T. Blewett; Bonnie J. Buratti; U. Carsenty; Brett W. Denevi; M.C. De Sanctis; W.B. Garry; H. U. Keller; Elke Kersten; Katrin Krohn; J.-Y. Li; S. Marchi; Klaus-Dieter Matz; T. B. McCord; Harry Y. McSween; Scott C. Mest; D. W. Mittlefehldt; S. Mottola; A. Nathues; G. Neukum; David Patrick O'Brien; Carle M. Pieters

A New Dawn Since 17 July 2011, NASAs spacecraft Dawn has been orbiting the asteroid Vesta—the second most massive and the third largest asteroid in the solar system (see the cover). Russell et al. (p. 684) use Dawns observations to confirm that Vesta is a small differentiated planetary body with an inner core, and represents a surviving proto-planet from the earliest epoch of solar system formation; Vesta is also confirmed as the source of the howardite-eucrite-diogenite (HED) meteorites. Jaumann et al. (p. 687) report on the asteroids overall geometry and topography, based on global surface mapping. Vestas surface is dominated by numerous impact craters and large troughs around the equatorial region. Marchi et al. (p. 690) report on Vestas complex cratering history and constrain the age of some of its major regions based on crater counts. Schenk et al. (p. 694) describe two giant impact basins located at the asteroids south pole. Both basins are young and excavated enough amounts of material to form the Vestoids—a group of asteroids with a composition similar to that of Vesta—and HED meteorites. De Sanctis et al. (p. 697) present the mineralogical characterization of Vesta, based on data obtained by Dawns visual and infrared spectrometer, revealing that this asteroid underwent a complex magmatic evolution that led to a differentiated crust and mantle. The global color variations detailed by Reddy et al. (p. 700) are unlike those of any other asteroid observed so far and are also indicative of a preserved, differentiated proto-planet. Spacecraft data provide a detailed characterization of the second most massive asteroid in the solar system. Vesta’s surface is characterized by abundant impact craters, some with preserved ejecta blankets, large troughs extending around the equatorial region, enigmatic dark material, and widespread mass wasting, but as yet an absence of volcanic features. Abundant steep slopes indicate that impact-generated surface regolith is underlain by bedrock. Dawn observations confirm the large impact basin (Rheasilvia) at Vesta’s south pole and reveal evidence for an earlier, underlying large basin (Veneneia). Vesta’s geology displays morphological features characteristic of the Moon and terrestrial planets as well as those of other asteroids, underscoring Vesta’s unique role as a transitional solar system body.


Science | 2012

Elemental Mapping by Dawn Reveals Exogenic H in Vesta’s Regolith

Thomas H. Prettyman; David W. Mittlefehldt; N. Yamashita; D. J. Lawrence; Andrew W. Beck; William C. Feldman; Timothy J. McCoy; H.Y. McSween; Michael J. Toplis; Timothy N. Titus; Pasquale Tricarico; Robert C. Reedy; John S. Hendricks; O. Forni; Lucille Le Corre; Jian-Yang Li; H. Mizzon; Vishnu Reddy; C.A. Raymond; C. T. Russell

Vesta to the Core Vesta is one of the largest bodies in the main asteroid belt. Unlike most other asteroids, which are fragments of once larger bodies, Vesta is thought to have survived as a protoplanet since its formation at the beginning of the solar system (see the Perspective by Binzel, published online 20 September). Based on data obtained with the Gamma Ray and Neutron Detector aboard the Dawn spacecraft, Prettyman et al. (p. 242, published online 20 September) show that Vestas reputed volatile-poor regolith contains substantial amounts of hydrogen delivered by carbonaceous chondrite impactors. Observations of pitted terrain on Vesta obtained by Dawns Framing Camera and analyzed by Denevi et al. (p. 246, published online 20 September), provide evidence for degassing of volatiles and hence the presence of hydrated materials. Finally, paleomagnetic studies by Fu et al. (p. 238) on a meteorite originating from Vesta suggest that magnetic fields existed on the surface of the asteroid 3.7 billion years ago, supporting the past existence of a magnetic core dynamo. Analysis of data from the Dawn spacecraft implies that asteroid Vesta is rich in volatiles. Using Dawn’s Gamma Ray and Neutron Detector, we tested models of Vesta’s evolution based on studies of howardite, eucrite, and diogenite (HED) meteorites. Global Fe/O and Fe/Si ratios are consistent with HED compositions. Neutron measurements confirm that a thick, diogenitic lower crust is exposed in the Rheasilvia basin, which is consistent with global magmatic differentiation. Vesta’s regolith contains substantial amounts of hydrogen. The highest hydrogen concentrations coincide with older, low-albedo regions near the equator, where water ice is unstable. The young, Rheasilvia basin contains the lowest concentrations. These observations are consistent with gradual accumulation of hydrogen by infall of carbonaceous chondrites—observed as clasts in some howardites—and subsequent removal or burial of this material by large impacts.


Science | 2013

Evidence for Water Ice Near Mercury's North Pole from MESSENGER Neutron Spectrometer Measurements

D. J. Lawrence; William C. Feldman; John O. Goldsten; Sylvestre Maurice; Patrick N. Peplowski; Brian J. Anderson; David Bazell; Ralph L. McNutt; Larry R. Nittler; Thomas H. Prettyman; Douglas J. Rodgers; Sean C. Solomon; Shoshana Z. Weider

Wet Mercury Radar observations of Mercurys poles in the 1990s revealed regions of high backscatter that were interpreted as indicative of thick deposits of water ice; however, other explanations have also been proposed (see the Perspective by Lucey). MESSENGER neutron data reported by Lawrence et al. (p. 292, published online 29 November) in conjunction with thermal modeling by Paige et al. (p. 300, published online 29 November) now confirm that the primary component of radar-reflective material at Mercurys north pole is water ice. Neumann et al. (p. 296, published online 29 November) analyzed surface reflectance measurements from the Mercury Laser Altimeter onboard MESSENGER and found that while some areas of high radar backscatter coincide with optically bright regions, consistent with water ice exposed at the surface, some radar-reflective areas correlate with optically dark regions, indicative of organic sublimation lag deposits overlying the ice. Dark areas that fall outside regions of high radio backscatter suggest that water ice was once more widespread. Spacecraft data and a thermal model show that water ice and organic volatiles are present at Mercury’s north pole. [Also see Perspective by Lucey] Measurements by the Neutron Spectrometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft show decreases in the flux of epithermal and fast neutrons from Mercury’s north polar region that are consistent with the presence of water ice in permanently shadowed regions. The neutron data indicate that Mercury’s radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 30 cm thick that is less rich in hydrogen. Combined neutron and radar data are best matched if the buried layer consists of nearly pure water ice. The upper layer contains less than 25 weight % water-equivalent hydrogen. The total mass of water at Mercury’s poles is inferred to be 2 × 1016 to 1018 grams and is consistent with delivery by comets or volatile-rich asteroids.


Icarus | 2013

Olivine or impact melt: Nature of the ``Orange'' material on Vesta from Dawn

Lucille Le Corre; Vishnu Reddy; N. Schmedemann; Kris J. Becker; David Patrick O'Brien; N. Yamashita; Patrick N. Peplowski; Thomas H. Prettyman; Jian-Yang Li; Edward A. Cloutis; Brett W. Denevi; Thomas Kneisl; Eric E. Palmer; Robert W. Gaskell; A. Nathues; Michael J. Gaffey; David W. Mittlefehldt; W. B. Garry; H. Sierks; C. T. Russell; C.A. Raymond; Maria Cristina de Sanctis; Eleonora Ammanito

Abstract NASA’s Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types: (a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), (b) lobate patches with well-defined edges (nicknamed “pumpkin patches”), and (c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed “Leslie feature” first identified by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector (GRaND). Several possible options for the composition of the orange material are investigated including, cumulate eucrite layer exposed during impact, metal delivered by impactor, olivine–orthopyroxene mixture and impact melt. Based on our analysis, the orange material on Vesta is unlikely to be metal or olivine (originally proposed by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157)). Analysis of the elemental composition of Oppia ejecta blanket with GRaND suggests that its orange material has ∼25% cumulate eucrite component in a howarditic mixture, whereas two other craters with orange material in their ejecta, Octavia and Arruntia, show no sign of cumulate eucrites. Morphology and topography of the orange material in Oppia and Octavia ejecta and orange patches suggests an impact melt origin. A majority of the orange patches appear to be related to the formation of the Rheasilvia basin. Combining the interpretations from the topography, geomorphology, color and spectral parameters, and elemental abundances, the most probable analog for the orange material on Vesta is impact melt.


The Astrophysical Journal | 2016

SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES

J.-Y. Li; Vishnu Reddy; A. Nathues; Lucille Le Corre; M. R. M. Izawa; Edward A. Cloutis; Mark V. Sykes; U. Carsenty; Julie C. Castillo-Rogez; M. Hoffmann; R. Jaumann; Katrin Krohn; S. Mottola; Thomas H. Prettyman; M. Schaefer; Paul M. Schenk; Stefan E. Schröder; David A. Williams; David E. Smith; Maria T. Zuber; Alexander S. Konopliv; Ryan S. Park; C.A. Raymond; C. T. Russell

Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km2, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.


Science | 2011

Technical Comment on “Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND”

D. J. Lawrence; Vincent R. Eke; Richard C. Elphic; William C. Feldman; Herbert O. Funsten; Thomas H. Prettyman; Luis F. A. Teodoro

Based on a study of high-energy epithermal (HEE) neutrons in data from the Lunar Exploration Neutron Detector (LEND) on NASA’s Lunar Reconnaissance Orbiter (LRO), the background from HEE neutrons is larger than initially estimated. Claims by Mitrofanov et al. (Reports, 22 October 2010, p. 483) of enhanced hydrogen abundance in sunlit portions of the lunar south pole and quantitative hydrogen concentration values in south pole permanently shaded regions are therefore insufficiently supported.


Astrobiology | 2010

Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

D. J. Lawrence; Richard C. Elphic; W. C. Feldman; Herbert O. Funsten; Thomas H. Prettyman

Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1-1.5 times the spacecrafts altitude above the planetary surface (or 40-600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector--the Lunar Exploration Neutron Detector (LEND)--scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of approximately 100 cm(2) Sr (compared to the LEND geometric factor of approximately 10.9 cm(2) Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution.


Meteoritics & Planetary Science | 2013

Constraints on Vesta's elemental composition: Fast neutron measurements by Dawn's gamma ray and neutron detector

D. J. Lawrence; Patrick N. Peplowski; Thomas H. Prettyman; William C. Feldman; David Bazell; David W. Mittlefehldt; Robert C. Reedy; N. Yamashita

Surface composition information from Vesta is reported using fast neutron data collected by the gamma ray and neutron detector on the Dawn spacecraft. After correcting for variations due to hydrogen, fast neutrons show a compositional dynamic range and spatial variability that is consistent with variations in average atomic mass from howardite, eucrite, and diogenite (HED) meteorites. These data provide additional compositional evidence that Vesta is the parent body to HED meteorites. A subset of fast neutron data having lower statistical precision show spatial variations that are consistent with a 400 ppm variability in hydrogen concentrations across Vesta and supports the idea that Vestas hydrogen is due to long-term delivery of carbonaceous chondrite material.


Encyclopedia of the Solar System (Third Edition) | 2014

Chapter 54 – Remote Sensing of Chemical Elements Using Nuclear Spectroscopy

Thomas H. Prettyman

This chapter describes the application of nuclear spectroscopy to remote sensing of the elemental composition of planetary regoliths and atmospheres. A nuclear spectrometer deployed on an orbiting spacecraft can detect the characteristic gamma rays emitted by natural radioelements. The concentration of other rock-forming elements can be determined from neutron and gamma ray emissions induced by cosmic ray interactions. The geochemical information conveyed by gamma rays and neutrons provides constraints on the origin and evolution of solar system bodies, both small and large. Fundamental concepts, including the production and transport of gamma rays and neutrons, their information content, and measurement techniques, are presented. A brief history of the application of nuclear spectroscopy to planetary science, including a comprehensive list of missions and principal accomplishments, is provided. Scientific results from Lunar Prospector and Mars Odyssey are highlighted. The chapter concludes with a discussion of future prospects for this burgeoning field.

Collaboration


Dive into the Thomas H. Prettyman's collaboration.

Top Co-Authors

Avatar

D. J. Lawrence

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. T. Russell

University of California

View shared research outputs
Top Co-Authors

Avatar

C.A. Raymond

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

W. C. Feldman

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. Yamashita

Planetary Science Institute

View shared research outputs
Top Co-Authors

Avatar

William C. Feldman

Planetary Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick N. Peplowski

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge