Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Hartsch is active.

Publication


Featured researches published by Thomas Hartsch.


Nature | 2000

Structure of the 30S ribosomal subunit.

Brian T. Wimberly; Ditlev E. Brodersen; William M. Clemons; Robert J. Morgan-Warren; Andrew P. Carter; Clemens Vonrhein; Thomas Hartsch; V. Ramakrishnan

Genetic information encoded in messenger RNA is translated into protein by the ribosome, which is a large nucleoprotein complex comprising two subunits, denoted 30S and 50S in bacteria. Here we report the crystal structure of the 30S subunit from Thermus thermophilus, refined to 3 Å resolution. The final atomic model rationalizes over four decades of biochemical data on the ribosome, and provides a wealth of information about RNA and protein structure, protein–RNA interactions and ribosome assembly. It is also a structural basis for analysis of the functions of the 30S subunit, such as decoding, and for understanding the action of antibiotics. The structure will facilitate the interpretation in molecular terms of lower resolution structural data on several functional states of the ribosome from electron microscopy and crystallography.


The EMBO Journal | 2001

Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3.

Marta Pioletti; Frank Schlünzen; Jörg Harms; Raz Zarivach; Marco Glühmann; Horacio Avila; Anat Bashan; Heike Bartels; Tamar Auerbach; Carsten Jacobi; Thomas Hartsch; Ada Yonath; Francois Franceschi

The small ribosomal subunit is responsible for the decoding of genetic information and plays a key role in the initiation of protein synthesis. We analyzed by X‐ray crystallography the structures of three different complexes of the small ribosomal subunit of Thermus thermophilus with the A‐site inhibitor tetracycline, the universal initiation inhibitor edeine and the C‐terminal domain of the translation initiation factor IF3. The crystal structure analysis of the complex with tetracycline revealed the functionally important site responsible for the blockage of the A‐site. Five additional tetracycline sites resolve most of the controversial biochemical data on the location of tetracycline. The interaction of edeine with the small subunit indicates its role in inhibiting initiation and shows its involvement with P‐site tRNA. The location of the C‐terminal domain of IF3, at the solvent side of the platform, sheds light on the formation of the initiation complex, and implies that the anti‐association activity of IF3 is due to its influence on the conformational dynamics of the small ribosomal subunit.


Nature Biotechnology | 2004

The genome sequence of the extreme thermophile Thermus thermophilus

Anke Henne; Holger Brüggemann; Carsten Raasch; Arnim Wiezer; Thomas Hartsch; Heiko Liesegang; Andre Johann; Tanja Lienard; Olivia Gohl; Rosa Martinez-Arias; Carsten Jacobi; Vytaute Starkuviene; Silke Schlenczeck; Silke Dencker; Robert Huber; Hans-Peter Klenk; Wilfried Kramer; Rainer Merkl; Gerhard Gottschalk; Hans-Joachim Fritz

Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus Thermus. The genome consists of a 1,894,877 base pair chromosome and a 232,605 base pair megaplasmid, designated pTT27. The 2,218 identified putative genes were compared to those of the closest relative sequenced so far, the mesophilic bacterium Deinococcus radiodurans. Both organisms share a similar set of proteins, although their genomes lack extensive synteny. Many new genes of potential interest for biotechnological applications were found in T. thermophilus HB27. Candidates include various proteases and key enzymes of other fundamental biological processes such as DNA replication, DNA repair and RNA maturation.


Applied and Environmental Microbiology | 2001

Direct Cloning from Enrichment Cultures, a Reliable Strategy for Isolation of Complete Operons and Genes from Microbial Consortia

Plamena Entcheva; Wolfgang Liebl; Andre Johann; Thomas Hartsch; Wolfgang R. Streit

ABSTRACT Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Δ(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to biooperons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).


Journal of Bacteriology | 2002

Gene Islands Integrated into tRNA(Gly) Genes Confer Genome Diversity on a Pseudomonas aeruginosa Clone

Karen Larbig; Andreas Christmann; Andre Johann; Jens Klockgether; Thomas Hartsch; Rainer Merkl; Lotz Wiehlmann; Hans-Joachim Fritz; Burkhard Tümmler

Intraclonal genome diversity of Pseudomonas aeruginosa was studied in one of the most diverse mosaic regions of the P. aeruginosa chromosome. The ca. 110-kb large hypervariable region located near the lipH gene in two members of the predominant P. aeruginosa clone C, strain C and strain SG17M, was sequenced. In both strains the region consists of an individual strain-specific gene island of 111 (strain C) or 106 (SG17M) open reading frames (ORFs) and of a 7-kb stretch of clone C-specific sequence of 9 ORFs. The gene islands are integrated into conserved tRNA(Gly) genes and have a bipartite structure. The first part adjacent to the tRNA gene consists of strain-specific ORFs encoding metabolic functions and transporters, the majority of which have homologs of known function in other eubacteria, such as hemophores, cytochrome c biosynthesis, or mercury resistance. The second part is made up mostly of ORFs of yet-unknown function. Forty-seven of these ORFs are mutual homologs with a pairwise amino acid sequence identity of 35 to 88% and are arranged in the same order in the two gene islands. We hypothesize that this novel type of gene island derives from mobile elements which, upon integration, endow the recipient with strain-specific metabolic properties, thus possibly conferring on it a selective advantage in its specific habitat.


Applied and Environmental Microbiology | 2002

Molecular Analyses of the Natural Transformation Machinery and Identification of Pilus Structures in the Extremely Thermophilic Bacterium Thermus thermophilus Strain HB27

Alexandra Friedrich; Christina Prust; Thomas Hartsch; Anke Henne; Beate Averhoff

ABSTRACT Thermus thermophilus HB27, an extremely thermophilic bacterium, exhibits high competence for natural transformation. To identify genes of the natural transformation machinery of T. thermophilus HB27, we performed homology searches in the partially completed T. thermophilus genomic sequence for conserved competence genes. These analyses resulted in the detection of 28 open reading frames (ORFs) exhibiting significant similarities to known competence proteins of gram-negative and gram-positive bacteria. Disruption of 15 selected potential competence genes led to the identification of 8 noncompetent mutants and one transformation-deficient mutant with a 100-fold reduced transformation frequency. One competence protein is similar to DprA of Haemophilus influenzae, seven are similar to type IV pilus proteins of Pseudomonas aeruginosa or Neisseria gonorrhoeae (PilM, PilN, PilO, PilQ, PilF, PilC, PilD), and another deduced protein (PilW) is similar to a protein of unknown function in Deinococcus radiodurans R1. Analysis of the piliation phenotype of T. thermophilus HB27 revealed the presence of single pilus structures on the surface of the wild-type cells, whereas the noncompetent pil mutants of Thermus, with the exception of the pilF mutant, were devoid of pilus structures. These results suggest that pili and natural transformation in T. thermophilus HB27 are functionally linked.


Infection and Immunity | 2001

S-Fimbria-Encoding Determinant sfaI Is Located on Pathogenicity Island III536 of Uropathogenic Escherichia coli Strain 536

Ulrich Dobrindt; Gabriele Blum-Oehler; Thomas Hartsch; Gerhard Gottschalk; Eliora Z. Ron; Reinhard Fünfstück; Jörg Hacker

ABSTRACT The sfaI determinant encoding the S-fimbrial adhesin of uropathogenic Escherichia colistrains was found to be located on a pathogenicity island of uropathogenic E. coli strain 536. This pathogenicity island, designated PAI III536, is located at 5.6 min of theE. coli chromosome and covers a region of at least 37 kb between the tRNA locus thrW and yagU. As far as it has been determined, PAI III536 also contains genes which code for components of a putative enterochelin siderophore system of E. coli and Salmonella spp. as well as for colicin V immunity. Several intact or nonfunctional mobility genes of bacteriophages and insertion sequence elements such as transposases and integrases are present on PAI III536. The presence of known PAI III536 sequences has been investigated in several wild-type E. coli isolates. The results demonstrate that the determinants of the members of the S-family of fimbrial adhesins may be located on a common pathogenicity island which, in E. coli strain 536, replaces a 40-kb DNA region which represents anE. coli K-12-specific genomic island.


Applied and Environmental Microbiology | 2001

Natural Transformation in Mesophilic and Thermophilic Bacteria: Identification and Characterization of Novel, Closely Related Competence Genes in Acinetobacter sp. Strain BD413 and Thermus thermophilus HB27

Alexandra Friedrich; Thomas Hartsch; Beate Averhoff

ABSTRACT The mesophile Acinetobacter sp. strain BD413 and the extreme thermophile Thermus thermophilus HB27 display high frequencies of natural transformation. In this study we identified and characterized a novel competence gene in Acinetobacter sp. strain BD413, comA, whose product displays significant similarities to the competence proteins ComA and ComEC inNeisseria and Bacillus species. Transcription of comA correlated with growth phase-dependent transcriptional regulation of the recently identified pilin-like factors of the transformation machinery. This finding strongly suggests that comA is part of a competence regulon. Examination of the genome sequence of T. thermophilus HB27 led to detection of a comA/comEC-like open reading frame (ORF) which is flanked by an ORF whose product shows significant similarities to the Bacillus subtilis competence protein ComEA. To examine whether these two ORFs, designated comEC andcomEA, are implicated in natural transformation of T. thermophilus HB27, both were disrupted by using a thermostable kanamycin resistance marker. Natural transformation in comEC mutants was reduced 1,000-fold, whereas in comEA mutants the natural transformation phenotype was completely eliminated. These results strongly suggest that both genes, comEC and comEA, are required for natural transformation in T. thermophilus HB27. Several transmembrane α-helices are predicted based on the amino acid sequences of ComA in Acinetobacter sp. strain BD413 and ComEC in T. thermophilus HB27, which suggests that ComA and ComEC are located in the inner membrane and function in DNA transport through the cytoplasmic membrane.


Journal of Biological Chemistry | 2002

Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases.

Ivan Ahel; Constantinos Stathopoulos; Alexandre Ambrogelly; Anselm Sauerwald; Helen Toogood; Thomas Hartsch; Dieter Söll

Aminoacyl-tRNA synthetases are well known for their remarkable precision in substrate selection during aminoacyl-tRNA formation. Some synthetases enhance the accuracy of this process by editing mechanisms that lead to hydrolysis of incorrectly activated and/or charged amino acids. Prolyl-tRNA synthetases (ProRSs) can be divided into two structurally divergent groups, archaeal-type and bacterial-type enzymes. A striking difference between these groups is the presence of an insertion domain (∼180 amino acids) in the bacterial-type ProRS. Because the archaeal-type ProRS enzymes have been shown to recognize cysteine, we tested selected ProRSs from all three domains of life to determine whether cysteine activation is a general property of ProRS. Here we show that cysteine is activated by recombinant ProRS enzymes from the archaea Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus, from the eukaryote Saccharomyces cerevisiae, and from the bacteria Aquifex aeolicus, Borrelia burgdorferi, Clostridium sticklandii, Cytophaga hutchinsonii, Deinococcus radiodurans, Escherichia coli, Magnetospirillum magnetotacticum, Novosphingobium aromaticivorans, Rhodopseudomonas palustris, and Thermus thermophilus.This non-cognate amino acid was efficiently acylated in vitro onto tRNAPro, and the misacylated Cys-tRNAPro was not edited by ProRS. Therefore, ProRS exhibits a natural level of mischarging that is to date unequalled among the aminoacyl-tRNA synthetases.


Folding and Design | 1997

X-ray crystallography reveals stringent conservation of protein fold after removal of the only disulfide bridge from a stabilized immunoglobulin variable domain

Isabel Usón; M. Teresa Bes; George M. Sheldrick; Thomas R. Schneider; Thomas Hartsch; Hans-Joachim Fritz

BACKGROUND Immunoglobulin domains owe a crucial fraction of their conformational stability to an invariant central disulfide bridge, the closure of which requires oxidation. Under the reducing conditions prevailing in cell cytoplasm, accumulation of soluble immunoglobulin is prohibited by its inability to acquire and maintain the native conformation. Previously, we have shown that disulfide-free immunoglobulins can be produced in Escherichia coli and purified from cytoplasmic extracts. RESULTS Immunoglobulin REIv is the variable domain of a human kappa light chain. The disulfide-free variant REIv-C23V/Y32H was crystallized and its structure analyzed by X-ray crystallography (2.8 A resolution). The conformation of the variant is nearly identical to that of the wild-type protein and the conformationally stabilized variant REIv-T39K. This constitutes the first crystal structure of an immunoglobulin fragment without a disulfide bridge. The lack of the disulfide bridge produces no obvious local change in structure (compared with the wild type), whereas the Y32H mutation allows the formation of an additional hydrogen bond. There is a further change in the structure that is seen in the dimer in which Tyr49 has flipped out of the dimer interface in the mutant. CONCLUSIONS Immunoglobulin derivatives without a central disulfide bridge but with stringently conserved wild-type conformation can be constructed in a practical two-step approach. First, the protein is endowed with additional folding stability by the introduction of one or more stabilizing amino acid exchanges; second, the disulfide bridge is destroyed by substitution of one of the two invariant cysteines. Such derivatives can be accumulated in soluble form in the cytoplasmic compartment of the E. coli cell. Higher protein yields and evolutionary refinement of catalytic antibodies by genetic complementation are among the possible advantages.

Collaboration


Dive into the Thomas Hartsch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre Johann

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Merkl

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar

Anke Henne

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Carsten Jacobi

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Christmann

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Arnim Wiezer

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge