Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Holler is active.

Publication


Featured researches published by Thomas Holler.


The ISME Journal | 2011

Thermophilic anaerobic oxidation of methane by marine microbial consortia

Thomas Holler; Friedrich Widdel; Katrin Knittel; Rudolf Amann; Matthias Y. Kellermann; Kai-Uwe Hinrichs; Andreas Teske; Antje Boetius; Gunter Wegener

The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ⩽25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ⩾75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.


Environmental Microbiology | 2010

Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade.

Lars Schreiber; Thomas Holler; Katrin Knittel; Anke Meyerdierks; Rudolf Amann

The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Whereas three clades of ANME have been repeatedly studied with respect to phylogeny, key genes and genomic capabilities, little is known about their sulfate-reducing partner. In order to identify the partner of anaerobic methanotrophs of the ANME-2 clade, bacterial 16S rRNA gene libraries were constructed from cultures highly enriched for ANME-2a and ANME-2c in consortia with Deltaproteobacteria of the Desulfosarcina/Desulfococcus group (DSS). Phylogenetic analysis of those and publicly available sequences from AOM sites supported the hypothesis by Knittel and colleagues that the DSS partner belongs to the diverse SEEP-SRB1 cluster. Six subclusters of SEEP-SRB1, SEEP-SRB1a to SEEP-SRB1f, were proposed and specific oligonucleotide probes were designed. Using fluorescence in situ hybridization on samples from six different AOM sites, SEEP-SRB1a was identified as sulfate-reducing partner in up to 95% of total ANME-2 consortia. SEEP-SRB1a cells exhibited a rod-shaped, vibrioid, or coccoid morphology and were found to be associated with subgroups ANME-2a and ANME-2c. Moreover, SEEP-SRB1a was also detected in 8% to 23% of ANME-3 consortia in Haakon Mosby Mud Volcano sediments, previously described to be predominantly associated with SRB of the Desulfobulbus group. SEEP-SRB1a contributed to only 0.3% to 0.7% of all single cells in almost all samples indicating that these bacteria are highly adapted to a symbiotic relationship with ANME-2.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction

Thomas Holler; Gunter Wegener; Helge Niemann; Christian Deusner; Timothy G. Ferdelman; Antje Boetius; Benjamin Brunner; Friedrich Widdel

Microbial degradation of substrates to terminal products is commonly understood as a unidirectional process. In individual enzymatic reactions, however, reversibility (reverse reaction and product back flux) is common. Hence, it is possible that entire pathways of microbial degradation are associated with back flux from the accumulating product pool through intracellular intermediates into the substrate pool. We investigated carbon and sulfur back flux during the anaerobic oxidation of methane (AOM) with sulfate, one of the least exergonic microbial catabolic processes known. The involved enzymes must operate not far from the thermodynamic equilibrium. Such an energetic situation is likely to favor product back flux. Indeed, cultures of highly enriched archaeal–bacterial consortia, performing net AOM with unlabeled methane and sulfate, converted label from 14C-bicarbonate and 35S-sulfide to 14C-methane and 35S-sulfate, respectively. Back fluxes reached 5% and 13%, respectively, of the net AOM rate. The existence of catabolic back fluxes in the reverse direction of net reactions has implications for biogeochemical isotope studies. In environments where biochemical processes are close to thermodynamic equilibrium, measured fluxes of labeled substrates to products are not equal to microbial net rates. Detection of a reaction in situ by labeling may not even indicate a net reaction occurring in the direction of label conversion but may reflect the reverse component of a so far unrecognized net reaction. Furthermore, the natural isotopic composition of the substrate and product pool will be determined by both the forward and back flux. This finding may have to be considered in the interpretation of stable isotope records.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities.

Matthias Y. Kellermann; Gunter Wegener; Marcus Elvert; Marcos Yukio Yoshinaga; Yu-Shih Lin; Thomas Holler; Xavier Prieto Mollar; Katrin Knittel; Kai-Uwe Hinrichs

The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope–probing experiments with and without methane. The relative incorporation of 13C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing archaea assimilated primarily inorganic carbon. This assimilation is strongly accelerated in the presence of methane. Experiments with simultaneous amendments of both 13C-labeled dissolved inorganic carbon and deuterated water provided further insights into production rates of individual lipids derived from members of the methane-oxidizing community as well as their carbon sources used for lipid biosynthesis. In the presence of methane, all prominent lipids carried a dual isotopic signal indicative of their origin from primarily autotrophic microbes. In the absence of methane, archaeal lipid production ceased and bacterial lipid production dropped by 90%; the lipids produced by the residual fraction of the metabolically active bacterial community predominantly carried a heterotrophic signal. Collectively our results strongly suggest that the studied ANME-1 archaea oxidize methane but assimilate inorganic carbon and should thus be classified as methane-oxidizing chemoorganoautotrophs.


Environmental Microbiology Reports | 2009

Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro

Thomas Holler; Gunter Wegener; Katrin Knittel; Antje Boetius; Benjamin Brunner; Marcel M. M. Kuypers; Friedrich Widdel

The anaerobic oxidation of methane (AOM) by methanotrophic archaea and sulfate-reducing bacteria is the major sink of methane formed in marine sediments. The study of AOM as well as of methanogenesis in different habitats is essentially connected with the in situ analysis of stable isotope ((13) C/(12) C, D/H) signatures (δ-values). For their kinetic interpretation, experimental (cultivation-based) isotope fractionation factors (α-values) are richly available in the case of methanogenesis, but are scarce in the case of AOM. Here we used batch enrichment cultures with high AOM activity and without background methanogenesis from detrital remnants to determine (13) C/(12) C and D/H fractionation factors. The enrichment cultures which originated from three marine habitats (Hydrate Ridge, NE Pacific; Amon Mud Volcano, Mediterranean Sea; NW shelf, Black Sea) were dominated by archaeal phylotypes of anaerobic methanotrophs (ANME-2 clade). Isotope fractionation factors calculated from the isotope signatures as a function of the residual proportion of methane were 1.012-1.039 for (13) CH4 /(12) CH4 and 1.109-1.315 for CDH3 /CH4 . The present values from in vitro experiments were significantly higher than values previously estimated from isotope signature distributions in marine sediment porewater, in agreement with the overlap of other processes with AOM in the natural habitat.


Environmental Microbiology | 2012

Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate

Gunter Wegener; Marlene Bausch; Thomas Holler; Nguyen Manh Thang; Xavier Prieto Mollar; Matthias Y. Kellermann; Kai-Uwe Hinrichs; Antje Boetius

Sub-seafloor sediments are populated by large numbers of microbial cells but not much is known about their metabolic activities, growth rates and carbon assimilation pathways. Here we introduce a new method enabling the sensitive detection of microbial lipid production and the distinction of auto- and heterotrophic carbon assimilation. Application of this approach to anoxic sediments from a Swedish fjord allowed to compare the activity of different functional groups, the growth and turnover times of the bacterial and archaeal communities. The assay involves dual stable isotope probing (SIP) with deuterated water (D(2) O) and (13) C(DIC) (dissolved inorganic carbon). Culture experiments confirmed that the D content in newly synthesized lipids is in equilibrium with the D content in labelled water, independent of whether the culture grew hetero- or autotrophically. The ratio of (13) C(DIC) to D(2) O incorporation enables distinction between these two carbon pathways in studies of microbial cultures and in environmental communities. Furthermore, D(2) O-SIP is sufficiently sensitive to detect the formation of few hundred cells per day in a gram of sediment. In anoxic sediments from a Swedish fjord, we found that > 99% of newly formed lipids were attributed to predominantly heterotrophic bacteria. The production rate of bacterial lipids was highest in the top 5 cm and decreased 60-fold below this depth while the production rate of archaeal lipids was rather low throughout the top meter of seabed. The contrasting patterns in the rates of archaeal and bacterial lipid formation indicate that the factors controlling the presence of these two lipid groups must differ fundamentally.


Environmental Microbiology | 2013

Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing

Yu-Shih Lin; Julius S. Lipp; Marcus Elvert; Thomas Holler; Kai-Uwe Hinrichs

The membrane lipids diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2G-GDGTs) in marine subsurface sediments are believed to originate from uncultivated benthic archaea, yet the production of 2G-GDGTs from subseafloor samples has not been demonstrated in vitro. In order to validate sedimentary biosynthesis of 2G-GDGTs, we performed a stable carbon isotope probing experiment on a subseafloor sample with six different (13) C-labelled substrates (bicarbonate, methane, acetate, leucine, glucose and Spirulina platensis biomass). After 468 days of anoxic incubation, only glucose and S. platensis resulted in label uptake in lipid moieties of 2G-GDGTs, indicating incorporation of carbon from these organic substrates. The hydrophobic moieties of 2G-GDGTs showed minimal label incorporation, with up to 4‰ (13) C enrichment detected in crenarchaeol-derived tricyclic biphytane from the S. platensis-supplemented slurries. The 2G-GDGT-derived glucose or glycerol moieties also showed (13) C incorporation (Δδ(13) C = 18-38‰) in the incubations with glucose or S. platensis, consistent with a lipid salvage mechanism utilized by marine benthic archaea to produce new 2G-GDGTs. The production rates were nevertheless rather slow, even when labile organic matter was supplied. The 2G-GDGT turnover times of 1700-20,500 years were much longer than those estimated for subseafloor microbial communities, implying that sedimentary 2G-GDGTs as biomarkers of benthic archaea are cumulative records of past and present generations.


Geomicrobiology Journal | 2010

Effect of Storage Conditions on Archaeal and Bacterial Communities in Subsurface Marine Sediments

Yu-Shih Lin; Jennifer F. Biddle; Julius S. Lipp; Beth N. Orcutt; Thomas Holler; Andreas Teske; Kai Uwe Hinrichs

We have studied the effects of slow infiltration of oxygen on microbial communities in refrigerated legacy samples from ocean drilling expeditions. Storage was in heat-sealed, laminated foil bags with a N2 headspace for geomicrobiological studies. Analysis of microbial lipids suggests that Bacteria were barely detectable in situ but increased remarkably during storage. Detailed molecular examination of a methane-rich sediment horizon showed that refrigeration triggered selective growth of ANME-2 archaea and a drastic change in the bacterial community. Subsequent enrichment targeting methanogens yielded exclusively methylotrophs, which were probably selected for by high sulfate levels caused by oxidation of reduced sulfur species. We provide recommendations for sample storage in future ocean drilling expeditions.


Environmental Microbiology | 2015

Use of carbon monoxide and hydrogen by a bacteria–animal symbiosis from seagrass sediments

Manuel Kleiner; Cecilia Wentrup; Thomas Holler; Gaute Lavik; Jens Harder; Christian Lott; Sten Littmann; Marcel M. M. Kuypers; Nicole Dubilier

Summary The gutless marine worm O lavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO 2) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O . algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H 2) might also be used as energy sources. We provide direct evidence that the O . algarvensis symbiosis consumes CO and H 2. Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3‐symbiont, uses the energy from CO oxidation to fix CO 2. Pore water analysis revealed considerable in‐situ concentrations of CO and H 2 in the O . algarvensis environment, Mediterranean seagrass sediments. Pore water H 2 concentrations (89–2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36‐fold higher than previously known from shallow‐water marine sediments. Pore water CO concentrations (17–51 nM) were twice as high as in the overlying seawater (no literature data from other shallow‐water sediments are available for comparison). Ex‐situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.


Archive | 2009

The Seabed as Natural Laboratory: Lessons From Uncultivated Methanotrophs

Antje Boetius; Thomas Holler; Katrin Knittel; Janine Felden; Frank Wenzhöfer

The anaerobic oxidation of methane (AOM) by archaeal methanotrophs(ANME) functions as a major sink in oceanic methane geochemistry, and is a key biogeochemial process in the anoxic seabed. Unfortunately, demonstration of the biochemical pathway of AOM has not been possible because of the lack of pure cultures of ANME and their partner sulfate-reducing bacteria. The main reason for failing to isolate these microorganisms by cultivation is their slow growth, which is most likely a consequence of the low energy yield of the AOM reaction. This chapter discusses how in situ biogeochemical and microbiological observations of natural seabed communities and in vitro enrichments contribute to understanding of the ecology and physiology of these “uncultivables”. Successful in vitro enrichment strategies include selecting seabed inoculates with abundant ANME populations, increasing the availability of dissolved methane and sulfate by flow through reactors and hydrostatic pressure, and maintaining the apparent temperature, pH, and salinity optima of AOM, the energy delivering process.

Collaboration


Dive into the Thomas Holler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai-Uwe Hinrichs

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Kai-Uwe Hinrichs

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge