Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Shih Lin is active.

Publication


Featured researches published by Yu-Shih Lin.


Applied and Environmental Microbiology | 2008

Methane-Producing Microbial Community in a Coal Bed of the Illinois Basin

Dariusz Strapoc; Flynn W. Picardal; Courtney Turich; Irene Schaperdoth; Jennifer L. Macalady; Julius S. Lipp; Yu-Shih Lin; Tobias F Ertefai; Florence Schubotz; Kai-Uwe Hinrichs; Maria Mastalerz; Arndt Schimmelmann

ABSTRACT A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H2 and CO2, which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H2-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H2-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.


Science | 2015

Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor

Fumio Inagaki; Kai-Uwe Hinrichs; Yusuke Kubo; Marshall W Bowles; Verena B Heuer; W L Hong; Tatsuhiko Hoshino; Akira Ijiri; Hiroyuki Imachi; Motoo Ito; Masanori Kaneko; Mark A. Lever; Yu-Shih Lin; Barbara A. Methé; Sumito Morita; Yuki Morono; Wataru Tanikawa; M Bihan; Stephen A. Bowden; Marcus Elvert; Clemens Glombitza; D Gross; Guy J. Harrington; Tomoyuki Hori; Kelvin Li; D Limmer; C H Liu; Masafumi Murayama; Naohiko Ohkouchi; Shuhei Ono

A deep sleep in coal beds Deep below the ocean floor, microorganisms from forest soils continue to thrive. Inagaki et al. analyzed the microbial communities in several drill cores off the coast of Japan, some sampling more than 2 km below the seafloor (see the Perspective by Huber). Although cell counts decreased with depth, deep coal beds harbored active communities of methanogenic bacteria. These communities were more similar to those found in forest soils than in other deep marine sediments. Science, this issue p. 420; see also p. 376 Coal beds more than 2 kilometers below the seafloor host methanogenic bacteria related to those found in forest soils. [Also see Perspective by Huber] Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~104 cells cm−3. Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities.

Matthias Y. Kellermann; Gunter Wegener; Marcus Elvert; Marcos Yukio Yoshinaga; Yu-Shih Lin; Thomas Holler; Xavier Prieto Mollar; Katrin Knittel; Kai-Uwe Hinrichs

The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope–probing experiments with and without methane. The relative incorporation of 13C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing archaea assimilated primarily inorganic carbon. This assimilation is strongly accelerated in the presence of methane. Experiments with simultaneous amendments of both 13C-labeled dissolved inorganic carbon and deuterated water provided further insights into production rates of individual lipids derived from members of the methane-oxidizing community as well as their carbon sources used for lipid biosynthesis. In the presence of methane, all prominent lipids carried a dual isotopic signal indicative of their origin from primarily autotrophic microbes. In the absence of methane, archaeal lipid production ceased and bacterial lipid production dropped by 90%; the lipids produced by the residual fraction of the metabolically active bacterial community predominantly carried a heterotrophic signal. Collectively our results strongly suggest that the studied ANME-1 archaea oxidize methane but assimilate inorganic carbon and should thus be classified as methane-oxidizing chemoorganoautotrophs.


Environmental Microbiology | 2013

Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing

Yu-Shih Lin; Julius S. Lipp; Marcus Elvert; Thomas Holler; Kai-Uwe Hinrichs

The membrane lipids diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2G-GDGTs) in marine subsurface sediments are believed to originate from uncultivated benthic archaea, yet the production of 2G-GDGTs from subseafloor samples has not been demonstrated in vitro. In order to validate sedimentary biosynthesis of 2G-GDGTs, we performed a stable carbon isotope probing experiment on a subseafloor sample with six different (13) C-labelled substrates (bicarbonate, methane, acetate, leucine, glucose and Spirulina platensis biomass). After 468 days of anoxic incubation, only glucose and S. platensis resulted in label uptake in lipid moieties of 2G-GDGTs, indicating incorporation of carbon from these organic substrates. The hydrophobic moieties of 2G-GDGTs showed minimal label incorporation, with up to 4‰ (13) C enrichment detected in crenarchaeol-derived tricyclic biphytane from the S. platensis-supplemented slurries. The 2G-GDGT-derived glucose or glycerol moieties also showed (13) C incorporation (Δδ(13) C = 18-38‰) in the incubations with glucose or S. platensis, consistent with a lipid salvage mechanism utilized by marine benthic archaea to produce new 2G-GDGTs. The production rates were nevertheless rather slow, even when labile organic matter was supplied. The 2G-GDGT turnover times of 1700-20,500 years were much longer than those estimated for subseafloor microbial communities, implying that sedimentary 2G-GDGTs as biomarkers of benthic archaea are cumulative records of past and present generations.


Rapid Communications in Mass Spectrometry | 2010

Intramolecular stable carbon isotopic analysis of archaeal glycosyl tetraether lipids

Yu-Shih Lin; Julius S. Lipp; Marcos Yukio Yoshinaga; Shao-Hsuan Lin; Marcus Elvert; Kai-Uwe Hinrichs

Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2Gly-GDGTs) are associated with methanotrophic ANME-1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly-GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the δ(13)C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of δ(13)C values of sugars cleaved from 2Gly-GDGTs in two marine sediment samples, one containing predominantly ANME-1 archaea and the other benthic archaea, were obtained and compared with the δ(13)C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in (13)C relative to the corresponding major biphytane. This (13)C enrichment was significantly larger in the putative major glycolipids from ANME-1 archaea (∼15‰) than in those from benthic archaea (<7‰). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms.


Geomicrobiology Journal | 2010

Effect of Storage Conditions on Archaeal and Bacterial Communities in Subsurface Marine Sediments

Yu-Shih Lin; Jennifer F. Biddle; Julius S. Lipp; Beth N. Orcutt; Thomas Holler; Andreas Teske; Kai Uwe Hinrichs

We have studied the effects of slow infiltration of oxygen on microbial communities in refrigerated legacy samples from ocean drilling expeditions. Storage was in heat-sealed, laminated foil bags with a N2 headspace for geomicrobiological studies. Analysis of microbial lipids suggests that Bacteria were barely detectable in situ but increased remarkably during storage. Detailed molecular examination of a methane-rich sediment horizon showed that refrigeration triggered selective growth of ANME-2 archaea and a drastic change in the bacterial community. Subsequent enrichment targeting methanogens yielded exclusively methylotrophs, which were probably selected for by high sulfate levels caused by oxidation of reduced sulfur species. We provide recommendations for sample storage in future ocean drilling expeditions.


Scientific Reports | 2017

Near-surface heating of young rift sediment causes mass production and discharge of reactive dissolved organic matter

Yu-Shih Lin; Boris Koch; Tomas Feseker; Kai Ziervogel; Tobias Goldhammer; Frauke Schmidt; Matthias Witt; Matthias Y. Kellermann; Matthias Zabel; Andreas Teske; Kai Uwe Hinrichs

Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life.


Geochimica et Cosmochimica Acta | 2012

Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of both core and intact polar lipid forms

Xiao-Lei Liu; Julius S. Lipp; Jeffrey H. Simpson; Yu-Shih Lin; Roger E. Summons; Kai-Uwe Hinrichs


Geochimica et Cosmochimica Acta | 2012

Towards constraining H2 concentration in subseafloor sediment: A proposal for combined analysis by two distinct approaches

Yu-Shih Lin; Verena B Heuer; Tobias Goldhammer; Matthias Y. Kellermann; Matthias Zabel; Kai-Uwe Hinrichs


Marine Chemistry | 2014

Gas chromatographic analysis of methanol and ethanol in marine sediment pore waters: Validation and implementation of three pretreatment techniques

Guang-Chao Zhuang; Yu-Shih Lin; Marcus Elvert; Verena B Heuer; Kai-Uwe Hinrichs

Collaboration


Dive into the Yu-Shih Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge