Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Lie is active.

Publication


Featured researches published by Thomas J. Lie.


Molecular Systems Biology | 2007

Metabolic modeling of a mutualistic microbial community

Sergey Stolyar; Steve Van Dien; Kristina L. Hillesland; Nicolás Pinel; Thomas J. Lie; John A. Leigh; David A. Stahl

The rate of production of methane in many environments depends upon mutualistic interactions between sulfate‐reducing bacteria and methanogens. To enhance our understanding of these relationships, we took advantage of the fully sequenced genomes of Desulfovibrio vulgaris and Methanococcus maripaludis to produce and analyze the first multispecies stoichiometric metabolic model. Model results were compared to data on growth of the co‐culture on lactate in the absence of sulfate. The model accurately predicted several ecologically relevant characteristics, including the flux of metabolites and the ratio of D. vulgaris to M. maripaludis cells during growth. In addition, the model and our data suggested that it was possible to eliminate formate as an interspecies electron shuttle, but hydrogen transfer was essential for syntrophic growth. Our work demonstrated that reconstructed metabolic networks and stoichiometric models can serve not only to predict metabolic fluxes and growth phenotypes of single organisms, but also to capture growth parameters and community composition of simple bacterial communities.


Journal of Bacteriology | 2004

Complete Genome Sequence of the Genetically Tractable Hydrogenotrophic Methanogen Methanococcus maripaludis

Erik L. Hendrickson; Rajinder Kaul; Yang Zhou; D. Bovee; P. Chapman; J. Chung; E. Conway de Macario; J. A. Dodsworth; W. Gillett; David E. Graham; Murray Hackett; Andrew K. Haydock; Allison Kang; Miriam Land; Ruth Levy; Thomas J. Lie; Tiffany A. Major; Brian C. Moore; Iris Porat; A. Palmeiri; G. Rouse; C. Saenphimmachak; Dieter Söll; S. Van Dien; Tiansong Wang; William B. Whitman; Qiangwei Xia; Y. Zhang; Frank W. Larimer; Maynard V. Olson

The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase

Kyle C. Costa; Phoebe M. Wong; Tiansong Wang; Thomas J. Lie; Jeremy A. Dodsworth; Ingrid Swanson; June A. Burn; Murray Hackett; John A. Leigh

In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579–591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F420-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H2 or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H2 via F420-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H2 as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F420-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H2, is closely integrated into the methanogenic pathway.


Molecular Microbiology | 2002

A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis

Thomas J. Lie; John A. Leigh

Nitrogen assimilation in the methanogenic archaeon Methanococcus maripaludis is regulated by transcriptional repression involving a palindromic ‘nitrogen operator’ repressor binding sequence. Here we report the isolation of the nitrogen repressor, NrpR, from M. maripaludis using DNA affinity purification. Deletion of the nrpR gene resulted in loss of nitrogen operator binding activity in cell extracts and loss of repression of nif (nitrogen‐fixation) and glnA (glutamine synthetase) gene expression in vivo. Genetic complementation of the nrpR mutation restored all functions. NrpR contained a putative N‐terminal winged helix–turn–helix motif followed by two mutually homologous domains of unknown function. Comparison of the migration of NrpR in gel‐filtration chromatography with its subunit molecular weight (60 kDa) suggested that NrpR was a tetramer. Several lines of evidence suggested that the level of NrpR itself is not regulated, and the binding affinity of NrpR to the nitrogen operator is controlled by an unknown mechanism. Homologues of NrpR were found only in certain species in the kingdom Euryarchaeota. Full length homologues were found in Methanocaldococcus jannaschii and Methanothermobacter thermoautotrophicus, and homologues lacking one or more of the three polypeptide domains were found in Archaeoglobus fulgidus, Methanopyrus kandleri, Methanosarcina acetivorans, and Methanosarcina mazei. NrpR represents a new family of regulators unique to the Euryarchaeota.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis

Thomas J. Lie; Kyle C. Costa; Boguslaw Lupa; Suresh Korpole; William B. Whitman; John A. Leigh

Despite decades of study, electron flow and energy conservation in methanogenic Archaea are still not thoroughly understood. For methanogens without cytochromes, flavin-based electron bifurcation has been proposed as an essential energy-conserving mechanism that couples exergonic and endergonic reactions of methanogenesis. However, an alternative hypothesis posits that the energy-converting hydrogenase Eha provides a chemiosmosis-driven electron input to the endergonic reaction. In vivo evidence for both hypotheses is incomplete. By genetically eliminating all nonessential pathways of H2 metabolism in the model methanogen Methanococcus maripaludis and using formate as an additional electron donor, we isolate electron flow for methanogenesis from flux through Eha. We find that Eha does not function stoichiometrically for methanogenesis, implying that electron bifurcation must operate in vivo. We show that Eha is nevertheless essential, and a substoichiometric requirement for H2 suggests that its role is anaplerotic. Indeed, H2 via Eha stimulates methanogenesis from formate when intermediates are not otherwise replenished. These results fit the model for electron bifurcation, which renders the methanogenic pathway cyclic, and as such requires the replenishment of intermediates. Defining a role for Eha and verifying electron bifurcation provide a complete model of methanogenesis where all necessary electron inputs are accounted for.


BMC Microbiology | 2009

Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis

Qiangwei Xia; Tiansong Wang; Erik L. Hendrickson; Thomas J. Lie; Murray Hackett; John A. Leigh

BackgroundMethanogenic Archaea play key metabolic roles in anaerobic ecosystems, where they use H2 and other substrates to produce methane. Methanococcus maripaludis is a model for studies of the global response to nutrient limitations.ResultsWe used high-coverage quantitative proteomics to determine the response of M. maripaludis to growth-limiting levels of H2, nitrogen, and phosphate. Six to ten percent of the proteome changed significantly with each nutrient limitation. H2 limitation increased the abundance of a wide variety of proteins involved in methanogenesis. However, one protein involved in methanogenesis decreased: a low-affinity [Fe] hydrogenase, which may dominate over a higher-affinity mechanism when H2 is abundant. Nitrogen limitation increased known nitrogen assimilation proteins. In addition, the increased abundance of molybdate transport proteins suggested they function for nitrogen fixation. An apparent regulon governed by the euryarchaeal nitrogen regulator NrpR is discussed. Phosphate limitation increased the abundance of three different sets of proteins, suggesting that all three function in phosphate transport.ConclusionThe global proteomic response of M. maripaludis to each nutrient limitation suggests a wider response than previously appreciated. The results give new insight into the function of several proteins, as well as providing information that should contribute to the formulation of a regulatory network model.


Journal of Bacteriology | 2002

Regulatory Response of Methanococcus maripaludis to Alanine, an Intermediate Nitrogen Source

Thomas J. Lie; John A. Leigh

In the methanogenic archaeon Methanococcus maripaludis, growth with ammonia results in conditions of nitrogen excess. Complete repression of nitrogen fixation (nif) gene transcription occurs, and glutamine synthetase (glnA) gene transcription falls to a basal constitutive level. In addition, ammonia completely switches off nitrogenase enzyme activity. In contrast, growth with dinitrogen as the sole nitrogen source results in nitrogen starvation, full expression of nif and glnA, and high activity of nitrogenase. Here we report that a third nitrogen source, alanine, results in an intermediate regulatory response. Growth with alanine resulted in intermediate transcription of nif and glnA, and addition of alanine to a nitrogen-fixing (diazotrophic) culture caused partial switch-off of nitrogenase. This uniformity of response occurred despite differences in regulatory mechanisms. Nitrogenase switch-off requires the nitrogen sensor homologs NifI(1) and NifI(2), while transcriptional regulation of nif and glnA relies on a different, unknown sensor mechanism. In addition, although nif and glnA transcription are governed by a common repressor, the numbers and arrangements of repressor binding sites differ. Thus, the nif promoter region contains two operators situated downstream of the transcription start site, while the glnA promoter region contains only one operator just upstream of two closely spaced transcription start sites. In a previous study of nif expression using ammonia, we were able to detect a role only for the first nif operator in repression. Here we show that nif repression by alanine requires the second operator as well. In contrast, in the case of glnA the single operator was sufficient for repression by ammonia or alanine. These results suggest a uniform cellular response to nitrogen that is mediated by a different mechanism in each case.


Mbio | 2013

H2-Independent Growth of the Hydrogenotrophic Methanogen Methanococcus maripaludis

Kyle C. Costa; Thomas J. Lie; Michael A. Jacobs; John A. Leigh

ABSTRACT Hydrogenotrophic methanogenic Archaea require reduced ferredoxin as an anaplerotic source of electrons for methanogenesis. H2 oxidation by the hydrogenase Eha provides these electrons, consistent with an H2 requirement for growth. Here we report the identification of alternative pathways of ferredoxin reduction in Methanococcus maripaludis that operate independently of Eha to stimulate methanogenesis. A suppressor mutation that increased expression of the glycolytic enzyme glyceraldehyde-3-phosphate:ferredoxin oxidoreductase resulted in a strain capable of H2-independent ferredoxin reduction and growth with formate as the sole electron donor. In this background, it was possible to eliminate all seven hydrogenases of M. maripaludis. Alternatively, carbon monoxide oxidation by carbon monoxide dehydrogenase could also generate reduced ferredoxin that feeds into methanogenesis. In either case, the reduced ferredoxin generated was inefficient at stimulating methanogenesis, resulting in a slow growth phenotype. As methanogenesis is limited by the availability of reduced ferredoxin under these conditions, other electron donors, such as reduced coenzyme F420, should be abundant. Indeed, when F420-reducing hydrogenase was reintroduced into the hydrogenase-free mutant, the equilibrium of H2 production via an F420-dependent formate:H2 lyase activity shifted markedly toward H2 compared to the wild type. IMPORTANCE Hydrogenotrophic methanogens are thought to require H2 as a substrate for growth and methanogenesis. Here we show alternative pathways in methanogenic metabolism that alleviate this H2 requirement and demonstrate, for the first time, a hydrogenotrophic methanogen that is capable of growth in the complete absence of H2. The demonstration of alternative pathways in methanogenic metabolism suggests that this important group of organisms is metabolically more versatile than previously thought. Hydrogenotrophic methanogens are thought to require H2 as a substrate for growth and methanogenesis. Here we show alternative pathways in methanogenic metabolism that alleviate this H2 requirement and demonstrate, for the first time, a hydrogenotrophic methanogen that is capable of growth in the complete absence of H2. The demonstration of alternative pathways in methanogenic metabolism suggests that this important group of organisms is metabolically more versatile than previously thought.


Journal of Bacteriology | 2013

VhuD Facilitates Electron Flow from H2 or Formate to Heterodisulfide Reductase in Methanococcus maripaludis

Kyle C. Costa; Thomas J. Lie; Qin Xia; John A. Leigh

Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associated with the α subunit of heterodisulfide reductase (HdrA). In Methanococcus maripaludis the electrons for this reaction come from either formate or H2 via formate dehydrogenase (Fdh) or Hdr-associated hydrogenase (Vhu). However, how these enzymes bind to HdrA to deliver electrons is unknown. Here, we present evidence that the δ subunit of hydrogenase (VhuD) is central to the interaction of both enzymes with HdrA. When M. maripaludis is grown under conditions where both Fdh and Vhu are expressed, these enzymes compete for binding to VhuD, which in turn binds to HdrA. Under these conditions, both enzymes are fully functional and are bound to VhuD in substoichiometric quantities. We also show that Fdh copurifies specifically with VhuD in the absence of other hydrogenase subunits. Surprisingly, in the absence of Vhu, growth on hydrogen still occurs; we show that this involves F420-reducing hydrogenase. The data presented here represent an initial characterization of specific protein interactions centered on Hdr in a hydrogenotrophic methanogen that utilizes multiple electron donors for growth.


Genome Research | 2013

A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen

Sung Ho Yoon; Serdar Turkarslan; David Reiss; Min Pan; June A. Burn; Kyle C. Costa; Thomas J. Lie; Joseph Slagel; Robert L. Moritz; Murray Hackett; John A. Leigh; Nitin S. Baliga

Methanogens catalyze the critical methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and noncoding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 58 different steady-state and time-course experiments that were performed in chemostats or batch cultures under a spectrum of environmental perturbations that modulated methanogenesis. Analyses of the EGRIN model have revealed novel components of methanogenesis that included at least three additional protein-coding genes of previously unknown function as well as one noncoding RNA. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to intercoordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel transcription factors in the regulation of phosphate-dependent repression of formate dehydrogenase-a key enzyme in the methanogenesis pathway. The EGRIN model demonstrates regulatory affiliations within methanogenesis as well as between methanogenesis and other cellular functions.

Collaboration


Dive into the Thomas J. Lie's collaboration.

Top Co-Authors

Avatar

John A. Leigh

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kyle C. Costa

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Murray Hackett

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiansong Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian C. Moore

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

June A. Burn

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Qiangwei Xia

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge