Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas John Bleisch is active.

Publication


Featured researches published by Thomas John Bleisch.


Bioorganic & Medicinal Chemistry | 2003

Synthesis and structure-activity relationship studies of novel 2-diarylethyl substituted (2-carboxycycloprop-1-yl)glycines as high-affinity group II metabotropic glutamate receptor ligands.

Ulrik S Sørensen; Thomas John Bleisch; A.E. Kingston; Rebecca A. Wright; Bryan G. Johnson; Darryle D. Schoepp; Paul L. Ornstein

The major excitatory neurotransmitter in the central nervous system, (S)-glutamic acid , activates both ionotropic and metabotropic excitatory amino acid receptors. Its importance in connection to neurological and psychiatric disorders has directed great attention to the development of compounds that modulate the effects of this endogenous ligand. Whereas L-carboxycyclopropylglycine (L-CCG-1) is a potent agonist at, primarily, group II metabotropic glutamate receptors, alkylation of at the alpha-carbon notoriously result in group II mGluR antagonists, of which the most potent compound described so far, LY341495, displays IC(50) values of 23 and 10 nM at the group II receptor subtypes mGlu2 and mGlu3, respectively. In this study we synthesized a series of structural analogues of in which the xanthyl moiety is replaced by two substituted-phenyl groups. The pharmacological characterization shows that these novel compounds have very high affinity for group II mGluRs when tested as their racemates. The most potent analogues demonstrate K(i) values in the range of 5-12 nM, being thus comparable to LY341495.


Bioorganic & Medicinal Chemistry Letters | 1997

Structure-activity studies of aryl-spaced decahydroisoquinoline-3-carboxylic acid AMPA receptor antagonists

Thomas John Bleisch; Paul L. Ornstein; Nancy K. Allen; Rebecca A. Wright; David Lodge; Darryle D. Schoepp

Abstract We report the synthesis and structure activity studies of a series of decahydroisoquinoline AMPA antagonists where the distal acid is joined to the bicyclic ring nucleus with a spacer that contains an aromatic ring. These phenyl and thienyl substituted compounds are characterized as relatively potent AMPA antagoinsts.


ACS Medicinal Chemistry Letters | 2011

Novel 3-aryl indoles as progesterone receptor antagonists for uterine fibroids.

Timothy I. Richardson; Christian Alexander Clarke; Kuo-Long Yu; Ying K. Yee; Thomas John Bleisch; Jose Eduardo Lopez; Scott Alan Jones; Norman E. Hughes; Brian Stephen Muehl; Charles Willis Lugar; Terry L. Moore; Pamela K. Shetler; Richard W. Zink; John J. Osborne; Chahrzad Montrose-Rafizadeh; Nita Patel; Andrew G. Geiser; Rachelle J. Sells Galvin; Jeffrey Alan Dodge

We report the synthesis and characterization of novel 3-aryl indoles as potent and efficacious progesterone receptor (PR) antagonists with potential for the treatment of uterine fibroids. These compounds demonstrated excellent selectivity over other steroid nuclear hormone receptors such as the mineralocorticoid receptor (MR). They were prepared from 2-bromo-6-nitro indole in four to six steps using a Suzuki cross-coupling as the key step. Compound 8f was orally active in the complement 3 model of progesterone antagonism in the rat uterus and demonstrated partial antagonism in the McPhail model of progesterone activity.


ACS Medicinal Chemistry Letters | 2016

Novel Autotaxin Inhibitors for the Treatment of Osteoarthritis Pain: Lead Optimization via Structure-Based Drug Design

Spencer Brian Jones; Lance Allen Pfeifer; Thomas John Bleisch; Thomas James Beauchamp; Jim D. Durbin; V. Joseph Klimkowski; Norman E. Hughes; Christopher John Rito; Yen Dao; Joseph Michael Gruber; Hai Bui; Mark Chambers; Srinivasan Chandrasekhar; C. Lin; Denis J. McCann; Daniel R. Mudra; J.L. Oskins; Craig Swearingen; Kannan Thirunavukkarasu; Bryan H. Norman

In an effort to develop a novel therapeutic agent aimed at addressing the unmet need of patients with osteoarthritis pain, we set out to develop an inhibitor for autotaxin with excellent potency and physical properties to allow for the clinical investigation of autotaxin-induced nociceptive and neuropathic pain. An initial hit identification campaign led to an aminopyrimidine series with an autotaxin IC50 of 500 nM. X-ray crystallography enabled the optimization to a lead compound that demonstrated favorable potency (IC50 = 2 nM), PK properties, and a robust PK/PD relationship.


Bioorganic & Medicinal Chemistry Letters | 2013

GluK1 antagonists from 6-(tetrazolyl)phenyl decahydroisoquinoline derivatives: in vitro profile and in vivo analgesic efficacy.

Jose A. Martinez-Perez; Smriti Iyengar; Harlan E. Shannon; David Bleakman; Andrew Alt; David K. Clawson; Brian M. Arnold; Michael Gregory Bell; Thomas John Bleisch; Ana M. Castaño; Miriam del Prado; Esteban Dominguez; Ana Maria Escribano; Sandra Ann Filla; Ken H. Ho; Kevin John Hudziak; Carrie K. Jones; Ana I. Mateo; Brian Michael Mathes; Edward L. Mattiuz; Ann Marie L. Ogden; Rosa Maria A. Simmons; Douglas Richard Stack; Robert E. Stratford; Mark Alan Winter; Zhipei Wu; Paul L. Ornstein

We have explored the decahydroisoquinoline scaffold, bearing a phenyl tetrazole, as GluK1 antagonists with potential as oral analgesics. We have established the optimal linker atom between decahydroisoquinoline and phenyl rings and demonstrated an improvement of both the affinity for the GluK1 receptor and the selectivity against the related GluA2 receptor with proper phenyl substitution. In this Letter, we also disclose in vivo data that led to the discovery of LY545694·HCl, a compound with oral efficacy in two persistent pain models.


Bioorganic & Medicinal Chemistry Letters | 2013

GluK1 antagonists from 6-(carboxy)phenyl decahydroisoquinoline derivatives. SAR and evaluation of a prodrug strategy for oral efficacy in pain models

Jose A. Martinez-Perez; Smriti Iyengar; Harlan E. Shannon; David Bleakman; Andrew Alt; Brian M. Arnold; Michael Gregory Bell; Thomas John Bleisch; Ana M. Castaño; Miriam del Prado; Esteban Dominguez; Ana Maria Escribano; Sandra Ann Filla; Ken H. Ho; Kevin John Hudziak; Carrie K. Jones; Ana I. Mateo; Brian Michael Mathes; Edward L. Mattiuz; Ann Marie L. Ogden; Rosa Maria A. Simmons; Douglas Richard Stack; Robert E. Stratford; Mark Alan Winter; Zhipei Wu; Paul L. Ornstein

The synthesis and structure-activity relationship of decahydroisoquinoline derivatives with various benzoic acid substitutions as GluK1 antagonists are described. Potent and selective antagonists were selected for a tailored prodrug approach in order to facilitate the evaluation of the new compounds in pain models after oral administration. Several diester prodrugs allowed for acceptable amino acid exposure and moderate efficacy in vivo.


Bioorganic & Medicinal Chemistry Letters | 2016

Identification of potent and selective retinoic acid receptor gamma (RARγ) antagonists for the treatment of osteoarthritis pain using structure based drug design.

Norman E. Hughes; Thomas John Bleisch; Scott Alan Jones; Timothy I. Richardson; Robert Anthony Doti; Yong Wang; Stephanie L. Stout; Gregory L. Durst; Mark Chambers; J.L. Oskins; C. Lin; Lisa A. Adams; Todd J. Page; Robert J. Barr; Richard W. Zink; Harold E. Osborne; Chahrzad Montrose-Rafizadeh; Bryan H. Norman

A series of triaryl pyrazoles were identified as potent pan antagonists for the retinoic acid receptors (RARs) α, β and γ. X-ray crystallography and structure-based drug design were used to improve selectivity for RARγ by targeting residue differences in the ligand binding pockets of these receptors. This resulted in the discovery of novel antagonists which maintained RARγ potency but were greater than 500-fold selective versus RARα and RARβ. The potent and selective RARγ antagonist LY2955303 demonstrated good pharmacokinetic properties and was efficacious in the MIA model of osteoarthritis-like joint pain. This compound demonstrated an improved margin to RARα-mediated adverse effects.


Journal of Medicinal Chemistry | 1998

2-Substituted (2SR)-2-Amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as Potent and Selective Antagonists of Group II Metabotropic Glutamate Receptors. 2. Effects of Aromatic Substitution, Pharmacological Characterization, and Bioavailability

Paul L. Ornstein; Thomas John Bleisch; Macklin Brian Arnold; Jh Kennedy; Rebecca A. Wright; Bryan G. Johnson; Joseph P. Tizzano; Helton; Darryle D. Schoepp; M. Herin


Journal of Medicinal Chemistry | 2000

Biarylpropylsulfonamides as novel, potent potentiators of 2-amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)-propanoic acid (AMPA) receptors

Paul L. Ornstein; Dennis M. Zimmerman; Macklin Brian Arnold; Thomas John Bleisch; Buddy E. Cantrell; Richard Lee Simon; Hamideh Zarrinmayeh; Baker; Mary Gates; Joseph P. Tizzano; David Bleakman; Allan Mandelzys; Keith R. Jarvie; Ken Ho; Deverill M; Rajender Kamboj


Journal of Medicinal Chemistry | 1998

2-Substituted (2SR)-2-Amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as Potent and Selective Antagonists of Group II Metabotropic Glutamate Receptors. 1. Effects of Alkyl, Arylalkyl, and Diarylalkyl Substitution

Paul L. Ornstein; Thomas John Bleisch; Macklin Brian Arnold; Rebecca A. Wright; Bryan G. Johnson; Darryle D. Schoepp

Collaboration


Dive into the Thomas John Bleisch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge