Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas K. Frazer is active.

Publication


Featured researches published by Thomas K. Frazer.


Annals of the New York Academy of Sciences | 2008

High Latitude Changes in Ice Dynamics and Their Impact on Polar Marine Ecosystems

Mark A. Moline; Nina J. Karnovsky; Zachary W. Brown; George J. Divoky; Thomas K. Frazer; Charles A. Jacoby; Joseph J. Torres; William R. Fraser

Polar regions have experienced significant warming in recent decades. Warming has been most pronounced across the Arctic Ocean Basin and along the Antarctic Peninsula, with significant decreases in the extent and seasonal duration of sea ice. Rapid retreat of glaciers and disintegration of ice sheets have also been documented. The rate of warming is increasing and is predicted to continue well into the current century, with continued impacts on ice dynamics. Climate‐mediated changes in ice dynamics are a concern as ice serves as primary habitat for marine organisms central to the food webs of these regions. Changes in the timing and extent of sea ice impose temporal asynchronies and spatial separations between energy requirements and food availability for many higher trophic levels. These mismatches lead to decreased reproductive success, lower abundances, and changes in distribution. In addition to these direct impacts of ice loss, climate‐induced changes also facilitate indirect effects through changes in hydrography, which include introduction of species from lower latitudes and altered assemblages of primary producers. Here, we review recent changes and trends in ice dynamics and the responses of marine ecosystems. Specifically, we provide examples of ice‐dependent organisms and associated species from the Arctic and Antarctic to illustrate the impacts of the temporal and spatial changes in ice dynamics.


Journal of Experimental Marine Biology and Ecology | 1997

Turnover of carbon and nitrogen during growth of larval krill, Euphausia superba Dana: a stable isotope approach

Thomas K. Frazer; Robin M. Ross; Langdon B. Quetin; Joseph P. Montoya

Abstract Using natural abundances of stable isotopes (δ13C and δ15N) as tracers, carbon and nitrogen turnover rates were determined for larval krill, Euphausia superba Dana, maintained in the laboratory. Experimental populations of larvae were reared at +1.5°C and −1.5°C on foods of known isotopic composition and subsampled weekly (8–10 weeks) for a determination of wet weight and isotopic composition. Metabolic turnover of carbon and nitrogen, manifested as temporal shifts in δ13C and δ15N, was tied closely to temperature. Larval krill reared at +1.5°C had replaced 22–29% of their original body carbon at the conclusion of the experiment, but only 13–22% of their original body nitrogen. Larvae reared at −1.5°C exhibited little evidence of carbon turnover and replaced less than 6% of their original body nitrogen. These are the first simultaneous, coupled measurements of long-term carbon and nitrogen turnover for any marine animal, and provide an essential calibration for the interpretation of stable isotope ratios in animals collected from the field. In addition to the feeding experiments, animals were starved for 2 months at +1.5°C and −1.5°C. Starved krill exhibited little isotopic change. This finding suggests that starvation cannot account for large temporal variations observed in the isotopic composition of larval krill collected from the field.


PLOS ONE | 2011

Evaluating the potential efficacy of invasive lionfish (Pterois volitans) removals.

Andrew B. Barbour; Mike S. Allen; Thomas K. Frazer; Krista D. Sherman

The lionfish, Pterois volitans (Linnaeus) and Pterois miles (Bennett), invasion of the Western Atlantic Ocean, Caribbean Sea and Gulf of Mexico has the potential to alter aquatic communities and represents a legitimate ecological concern. Several local removal programs have been initiated to control this invasion, but it is not known whether removal efforts can substantially reduce lionfish numbers to ameliorate these concerns. We used an age-structured population model to evaluate the potential efficacy of lionfish removal programs and identified critical data gaps for future studies. We used high and low estimates for uncertain parameters including: length at 50% vulnerability to harvest (Lvul), instantaneous natural mortality (M), and the Goodyear compensation ratio (CR). The model predicted an annual exploitation rate between 35 and 65% would be required to cause recruitment overfishing on lionfish populations for our baseline parameter estimates for M and CR (0.5 and 15). Lionfish quickly recovered from high removal rates, reaching 90% of unfished biomass six years after a 50-year simulated removal program. Quantifying lionfish natural mortality and the size-selective vulnerability to harvest are the most important knowledge gaps for future research. We suggest complete eradication of lionfish through fishing is unlikely, and substantial reduction of adult abundance will require a long-term commitment and may be feasible only in small, localized areas where annual exploitation can be intense over multiple consecutive years.


Reviews in Fisheries Science | 2012

Coping with the Lionfish Invasion: can targeted removals yield beneficial effects?

Thomas K. Frazer; Charles A. Jacoby; Morgan A. Edwards; Savanna C. Barry; Carrie Manfrino

Invasive species generate significant environmental and economic costs, with maintenance management constituting a major expenditure. Such costs are generated by invasive Indo-Pacific lionfish (Pterois spp.) that further threaten already stressed coral reefs in the western Atlantic Ocean and Caribbean Sea. This brief review documents rapid range expansion and potential impacts of lionfish. In addition, preliminary experimental data from targeted removals contribute to debates about maintenance management. Removals at sites off Little Cayman Island shifted the size frequency distribution of remaining lionfish toward smaller individuals whose stomachs contained less prey and fewer fish. Fewer lionfish and decreased predation on threatened grouper, herbivores and other economically and ecologically important fishes represent key steps toward protecting reefs. However, complete evaluation of success requires long-term data detailing immigration and recruitment by lionfish, compensatory growth and reproduction of lionfish, reduced direct effects on prey assemblages, and reduced indirect effects mediated by competition for food. Preventing introductions is the best way to avoid impacts from invasive species, and early detection linked to rapid response ranks second. Nevertheless, results from this case study suggest that targeted removals represent a viable option for shifting direct impacts of invasive lionfish away from highly vulnerable components of ecosystems.


Ecological Applications | 2006

Density-dependent habitat selection and performance by a large mobile reef fish.

William J. Lindberg; Thomas K. Frazer; Kenneth M. Portier; Frederic Vose; James Loftin; Debra J. Murie; Doran M. Mason; Brian Nagy; Mary K. Hart

Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and condition. Density-dependent habitat selection for shelter and individual growth dynamics were therefore interdependent ecological processes that help to explain how patchy reef habitat sustains gag production. Moreover, gag selected shelter at the expense of maximizing their growth. Thus, mobile reef fishes could experience density-dependent effects on growth, survival, and/or reproduction (i.e., demographic parameters) despite reduced stock sizes as a consequence of fishing.


Landscape Ecology | 2008

Influence of landscape structure on reef fish assemblages

Rikki Grober-Dunsmore; Thomas K. Frazer; James P. Beets; William J. Lindberg; Paul D. Zwick; Nicholas A. Funicelli

Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape.


Archive | 2009

A Landscape Ecology Approach for the Study of Ecological Connectivity Across Tropical Marine Seascapes

Rikki Grober-Dunsmore; Simon J. Pittman; Chris Caldow; Matthew S. Kendall; Thomas K. Frazer

Connectivity across the seascape is expected to have profound consequences for the behavior, growth, survival, and spatial distribution of marine species. A landscape ecology approach offers great utility for studying ecological connectivity in tropical marine seascapes. Landscape ecology provides a well developed conceptual and operational framework for addressing complex multi-scale questions regarding the influence of spatial patterning on ecological processes. Landscape ecology can provide quantitative and spatially explicit information at scales relevant to resource management decision making. It will allow us to begin asking key questions such as ‘how much habitat to protect?’, ‘What type of habitat to protect?’, and ‘Which seascape patterns provide optimal, suboptimal, or dysfunctional connectivity for mobile marine organisms?’. While landscape ecology is increasingly being applied to tropical marine seascapes, few studies have dealt explicitly with the issue of connectivity. Herein, we examine the application of landscape ecology to better understand ecological connectivity in tropical marine ecosystems by: (1) reviewing landscape ecology concepts, (2) discussing the landscape ecology methods and tools available for evaluating connectivity, (3) examining data needs and obstacles, (4) reviewing lessons learned from terrestrial landscape ecology and from coral reef ecology studies, and (5) discussing the implications of ecological connectivity for resource management. Several recent studies conducted in coral reef ecosystems demonstrate the powerful utility of landscape ecology approaches for improving our understanding of ecological connectivity and applying results to make more informed decisions for conservation planning.


Estuaries | 2003

Comparative patterns of occupancy by decapod crustaceans in seagrass, oyster, and marsh-edge habitats in a Northeast Gulf of Mexico estuary

Thomas P. Glancy; Thomas K. Frazer; Charles E. Cichra; William J. Lindberg

Decapod crustaceans occupying seagrass, salt marsh edge, and oyster habitats within the St. Martins Aquatic Preserve along the central Gulf coast of Florida were quantitatively sampled using a 1-m2 throw trap during July–August 1999 and March–April 2000. Relative abundance and biomass were used as the primary measures to compare patterns of occupancy among the three habitat types. Representative assemblages of abundant and common species from each habitat were compared using Schoeners Percent Similarity Index (PSI). In all, 17,985 decapods were sampled, representing 14 families and 28 species. In the summer sampling period, mean decapod density did not differ between oyster and seagrass habitats, which both held greater densities of decapods than marsh-edge. In the spring sampling period oyster reef habitat supported greater mean decapod density than both seagrass and marsh-edge, which had similar densities of decapods. Habitat-specific comparisons of decapod density between the two sampling periods indicated no clear seasonal effect. In summer 1999, when seagrasses were well established, decapod biomass among the three habitats was not significantly different. During spring 2000, decapod biomass in oyster (41.40 gm−2) was greater than in marshedge (4.20 gm−2), but did not differ from that of seagrass (9.73 g m−2). There was no significant difference in decapod biomas between seagrass and marsh-edge habitats during the spring 2000 sampling period. The assemblage analysis using Schoeners PSI indicated that decapod assemblages associated with oyster were distinct from seagrass and marshedge habitats (which were similar). The results of this study suggest that in comparison to seagrass and marsh-edge habitats, oyster reef habitats and the distinct assemblage of decapod crustaceans that they support represent an ecologically important component of this estuarine system.


Ecological Applications | 2010

Algal blooms and the nitrogen-enrichment hypothesis in Florida springs: evidence, alternatives, and adaptive management

James B. Heffernan; Dina M. Liebowitz; Thomas K. Frazer; Jason M. Evans; Matthew J. Cohen

Contradictions between system-specific evidence and broader paradigms to explain ecosystem behavior present a challenge for natural resource management. In Florida (U.S.A.) springs, increasing nitrate (NO3-) concentrations have been implicated as the cause of algal overgrowth via alleviation of N-limitation. As such, policy and management efforts have centered heavily on reduction of nitrogen (N) loads. While the N-limitation hypothesis appears well founded on broadly supported aquatic eutrophication models, several observations from Florida springs are inconsistent with this hypothesis in its present simplified form. First, NO3- concentration is not correlated with algal abundance across the broad population of springs and is weakly negatively correlated with primary productivity. Second, within individual spring runs, algal mats are largely confined to the headwater reaches within 250 m of spring vents, while elevated NO3- concentrations persist for several kilometers or more. Third, historic observations suggest that establishment of macroalgal mats often lags behind observed increases in NO3- by more than a decade. Fourth, although microcosm experiments indicate high thresholds for N-limitation of algae, experiments in situ have demonstrated only minimal response to N enrichment. These muted responses may reflect large nutrient fluxes in springs, which were sufficient to satisfy present demand even at historic concentrations. New analyses of existing data indicate that dissolved oxygen (DO) has declined dramatically in many Florida springs over the past 30 years, and that DO and grazer abundance are better predictors of algal abundance in springs than are nutrient concentrations. Although a precautionary N-reduction strategy for Florida springs is warranted given demonstrable effects of nutrient enrichment in a broad suite of aquatic systems worldwide, the DO-grazer hypothesis and other potential mechanisms merit increased scientific scrutiny. This case study illustrates the importance of an adaptive approach that explicitly evaluates paradigms as hypotheses and actively seeks alternative explanations.


Oceanography | 2008

Dispersal of the Hudson River Plume in the New York Bight: Synthesis of Observational and Numerical Studies During LaTTE

Robert J. Chant; John Wilkin; Weifeng Zhang; Byoung-Ju Choi; Eli Hunter; Renato M. Castelao; Scott Glenn; Joe Jurisa; Oscar Schofield; Robert W. Houghton; Josh Kohut; Thomas K. Frazer; Mark A. Moline

characterized the variability of the Hudson River discharge and identified several freshwater transport pathways that lead to cross-shelf mixing of the Hudson plume. The plumes variability is comprised of several different outflow configurations that are related to wind forcing, river discharge, and shelf circulation. The modes are characterized by coastal current formation and unsteady bulge recirculation. Coastal currents are favored during low-discharge conditions and downwelling winds, and represent a rapid downshelf transport pathway. Bulge formation is favored during high-discharge conditions and upwelling winds. The bulge is characterized by clockwise rotating fluid and results in freshwater transport that is to the left of the outflow and opposed to classical coastal current theory. Upwelling winds augment this eastward flow and rapidly drive the freshwater along the Long Island coast. Upwelling winds also favor a midshelf transport pathway that advects fluid from the bulge region rapidly across the shelf on the inshore side of the Hudson Shelf Valley. A clockwise bulgelike recirculation also occurs along the New Jersey coast, to the south of the river mouth, and is characterized by an offshore veering of the coastal current. Modeling results indicate that the coastal transport pathways dominate during the winter months while the midshelf transport pathway dominates during summer months. Finally, because the time scales of biogeochemical transformations in the plume range from hours to weeks or longer, the details of both the near-and far-field plume dynamics play a central role in the fate of material transported from terrestrial to marine ecosystems.

Collaboration


Dive into the Thomas K. Frazer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge