Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Kannengiesser is active.

Publication


Featured researches published by Thomas Kannengiesser.


Welding in The World | 2013

Cold cracking tests—an overview of present technologies and applications

Thomas Kannengiesser; Thomas Boellinghaus

This study provides an in-depth survey of current technologies and applications for assessing the cold cracking susceptibility of welded joints. From the large variety of existent cold cracking test procedures, the most important and internationally established tests are presented and evaluated in terms of their usefulness and application limits. According to the type of loading, the test procedures are classified into self-restraint and externally loaded tests. Apart from the merely metallurgical weldability tests for determining the cracking susceptibility of base materials, filler materials and weld metals, advanced test methods are presented for evaluating the cold cracking susceptibility of welded components. A salient point brought out in this respect is the fact that the level of external loading in such component weld tests can be applied independently of the welding parameters, reproducing as realistically as possible the practical application case, i.e. the level of the restraint intensity. This study includes a summarized comparison of the cold cracking procedures. It is emphasized that highly accurate consideration and reproduction of the design-specific stiffness conditions is essential in the tests for assessing the cold cracking behaviour of welded joints. Therefore, various numerical analyses are presented in a final chapter for calculating the restraint intensity as a definitive factor affecting cold cracking.


Welding in The World | 2011

Characterizing PHASE TRANSFORMATIONS of different LTT alloys and their effect on RESIDUAL STRESSES and COLD CRACKING

Arne Kromm; Thomas Kannengiesser

Novel martensitic filler materials with specially adjusted martensite start temperatures (Ms) can counteract the cooling specific shrinkage due to expansion effects of the weld metal associated with phase transformations. That can be exploited to create compressive residual stresses in the weld and adjacent areas, i.e. beneficial for increasing fatigue strength. The Ms-temperature is shifted via the chemical composition, mainly by the alloying elements nickel and chromium, resulting as well in different retained austenite contents. Investigations were made using different Low Transformation Temperature (LTT) alloys with varying nickel content. The resulting phase transformation temperatures were — for the first time — detected using high energy synchrotron diffraction and Single Sensor Differential Thermal Analysis (SS-DTA). Compared to angle dispersive diffraction, energy dispersive diffraction offers the possibility to measure residual stresses of the martensite and austenite phase parallel fast in one experiment up to depths of 100 μm. The residual stresses show significant distributions dependent on the Ms-temperature. The effect on the cold cracking behaviour of these alloys was investigated using the Tekken test. Results show that cold cracking can be avoided when appropriate contents of retained austenite are existent.


Welding in The World | 2014

Residual stress engineering by low transformation temperature alloys—state of the art and recent developments

Arne Kromm; Jonny Dixneit; Thomas Kannengiesser

Residual stress engineering in welding becomes more and more prominent as the use of tailored materials, e.g., high-strength steels, calls for maximum utilization of the material properties. As a consequence, residual stresses have to be considered as design criterion. Moreover, it may be utilized to improve the material’s performance. Low transformation temperature alloys are a smart approach to control the residual stresses already during the welding process avoiding time-consuming postweld treatments. This paper gives an overview about the progress made in research in this topic with special focus on residual stresses. Basics as well as important developments will be addressed.


Materials Science Forum | 2010

In Situ Observation of Phase Transformations during Welding of Low Transformation Temperature Filler Material

Arne Kromm; Thomas Kannengiesser; Jens Gibmeier

Tensile residual stresses introduced by conventional welding processes diminish the crack resistance and the fatigue lifetime of welded components. In order to generate beneficial compressive residual stresses at the surface of a welded component, various post-weld treatment procedures are available, like shot peening, hammering, etc. These post-weld treatments are, however time and cost extensive. An attractive alternative is to generate compressive stresses over the complete weld joint in the course of the welding procedure by means of so-called Low Transformation Temperature (LTT) filler materials. The volume change induced by the transformation affects the residual stresses in the weld and its vicinity. LTT fillers exhibit a relatively low transformation temperature and a positive volume change, resulting in compressive residual stresses in the weld area. In-situ measurements of diffraction profiles during real welding experiments using Gas Tungsten Arc (GTA)-welding process were realized successfully for the first time. Transformation temperatures during heating and subsequent cooling of LTT welding material could be assessed by means of energy dispersive diffraction using high energy synchrotron radiation. The results show that the temperature of martensite start (Ms) is strongly dependent on the content of alloying elements. In addition the results indicate that different phase transformation temperatures are present depending on the welding depth. Additional determination of residual stresses allowed it to pull together time and temperature resolved phase transformations and the resulting phase specific residual stresses. It was shown, that for the evaluation of the residual stress state of LTT welds the coexisting martensitic and austenitic phases have to be taken into account when describing the global stress condition of the respective material in detail.


Materials Science Forum | 2011

Residual Stresses in Multilayer Welds with Different Martensitic Transformation Temperatures Analyzed by High-Energy Synchrotron Diffraction

Arne Kromm; Thomas Kannengiesser; Jens Altenkirch; Jens Gibmeier

Low Transformation Temperature (LTT) alloys were developed in order to control the residual stress development by the martensitic phase transformation already during cooling of the weld metal. The positive effect of such LTT alloys on the mitigation of detrimental tensile residual stresses during welding has already been confirmed on the basis of individual laboratory tests. Within the current project it was experimentally investigated whether the phase transformation mechanisms are effective under increased restraint due to multi-pass welding of thicker specimens. The local residual stress depth distribution was analyzed non-destructively for V-type welds processed by arc welding using energy dispersive synchrotron X-ray diffraction (EDXRD). The use of high energy (20 keV to 150 keV) EDXRD allowed for the evaluation of diffraction spectra containing information of all contributing phases. As the investigated LTT alloy contains retained austenite after welding, this phase was also considered for stress analysis. The results show in particular how the constraining effect of increased thickness of the welded plates and additional deposited weld metal influences the level of the residual stresses in near weld surface areas. While the longitudinal residual stresses were reduced in general, in the transition zone from the weld to the heat-affected zone (HAZ) compressive residual stresses were found.


Soldagem & Inspecao | 2009

In-situ-phase analysis using synchrotron radiation of low transformation temperature (LTT) welding material

Arne Kromm; Thomas Kannengiesser

Cold cracking resistance is a relevant evaluation criterion for welded joints and affected by residual stresses which result from the welding procedure. Compressive residual stresses can thereby have a positive influence on preventing cracking. A unique possibility of generating compressive residual stresses already during the welding procedure is offered by the so-called Low Transformation Temperature (LTT) filler wires. Compared to conventional wires, these materials show decreased phase transformation temperatures which can work against the cooling-specific contraction. In consequence, distinct compressive residual stresses can be observed within the weld and adjacent areas. The strength of these fillers makes them potentially applicable to high-strength steel welding. Investigations were carried out to determine the phase transformation behaviour of different LTT-filler materials. Transformation temperatures were identified using Single Sensor Differential Thermal Analysis (SS-DTA). Additionally Synchrotron radiation was used to measure the transformation kinetics of all involved crystalline phases during heating and cooling of a simulated weld thermal cycle.


Materials Science Forum | 2013

Residual stress in steel fusion welds joined using low transformation temperature (LTT) filler material

Jens Gibmeier; Esther Obelode; Jens Altenkirch; Arne Kromm; Thomas Kannengiesser

Welding residual stress is of major concern for structural integrity assessment in industrial components. Shear and volume strains resulting from the austenite-martensite-transformation affect the development of residual stress during welding. Controlling the phase transformation allows adjustment of the welding residual stress. Low transformation temperature (LTT) weld filler materials exhibiting reduced MS-temperatures allow postponing the phase transformation. The associated strain arising from the delayed transformation compensates for the thermal contraction strains and as such may reduce tensile or even introduce compressive residual stress. In this article we discuss the tri-axial residual stress distribution in 15 mm S690Q steel plates joined with LTT filler materials with 10 wt% Cr and a Ni-content that varies from 8 to 12 wt%. Using complementary synchrotron X-ray and neutron diffraction stress analysis the macroscopic residual stress was derived from the phase specific lattice strain and phase fraction of martensite and retained austenite, respectively. The local phase specific unstrained lattice parameters were determined using stress relieved combs. The investigation revealed increasing phase fraction of retained austenite with increasing Ni-content. Further, independent of the Ni-content in each weld in the fusion zone, significant compressive residual stresses were found in the longitudinal direction, which are balanced by tensile residual stresses in the heat affected zone (HAZ). In the weld transverse and normal direction the stress distribution is qualitatively similar but less in magnitude. The increased amount of retained austenite reduces the compressive stress arising from shear and volume strains during the delayed phase transformation and therefore no significant increase in compression was observed for decreasing MS-temperatures.


Welding in The World | 2010

Measurements of Diffusible Hydrogen Contents at Elevated Temperatures using Different Hot Extraction Techniques — An International Round Robin Test

Thomas Kannengiesser; Nico Tiersch

This international round robin test served to scrutinize the procedures specified in ISO/DIS 3690:2009 for determining the diffusible hydrogen content in weld metals with bcc-lattice structure. It was specifically intended to check in what respect the specifications defined in the indicated standards for specimen preparation, storage and hydrogen analysis provide comparable measurement results. The round robin test is presented comprising comparative measurements at various degassing temperatures using hot extraction techniques and a thermal conductivity detector (TCD). A major focus of this investigation was the examination of the maximum degassing temperature for analysing the diffusible hydrogen in materials with bcc-lattice structure. The analyses were performed using two different stick electrodes and three different filler wires. As a significant result it was found that no deviations or increases, were detected in the measured contents of diffusible hydrogen for the investigated degassing temperatures ranging between 45 °C and 400 °C. Hydrogen analyses for contents below HD = 1.5 ml/100 g with the hot extraction techniques in conjunction with TCD applied in this study led to considerable relative standard deviations.


Welding in The World | 2010

Comparative Study between Hot Extraction Methods and Mercury Method — A National Round Robin Test

Thomas Kannengiesser; Nico Tiersch

A round robin test is presented comprising comparative measurements using hot extraction at different degassing temperatures as well as the mercury method. A major focus of the investigation was verification of the maximum degassing temperature for analysing the diffusible hydrogen in weld metals with bcc-lattice structure. The analyses were executed using a basic stick electrode with high weld metal cracking, a high-alloyed supermartensitic filler wire with different hydrogen contents in the shielding gas and a high-strength solid wire. The results show that degassing temperatures of 150 °C and 400 °C do not lead to an increase in the measured contents of diffusible hydrogen as compared to measurements at room temperature. The measuring techniques and procedures specified in ISO/DIS 3690:2009 for determining the diffusible hydrogen content in weld metals with bcc-lattice structure yield approximately the same results. This is to say that the mercury method and the hot extraction methods with thermal conductivity detector (TCD) can be regarded as equivalent reference methods.


Soldagem & Inspecao | 2009

Formation of welding residual stresses in low transformation temperature (LTT) materials

Thomas Kannengiesser; Arne Kromm

For the safety and cost efficiency of welded high-strength steel structures, precise knowledge of the level and distribution of welding- and cooling-specific stresses and residual stresses is essential, since they exert a decisive influence on strength, crack resistance, and finally on the bearable service load. This paper presents innovative filler materials, of which the phase transformation temperature was deliberately adjusted via the chemical composition. The transformation behaviour of these martensitic Low Transformation Temperature (LTT-) filler materials shows direct effects on the local residual stresses in the weld and the HAZ. These effects can purposefully be exploited to counteract the thermally induced shrinkage of the material and to produce significant compressive residual stresses in the weld. Comparative welding experiments were carried out on 690 MPa high-strength base materials using various LTT-filler materials. High energy synchrotron radiation was used for residual stress measurement. Particularly the use of high energy synchrotron radiation makes it possible to detect the residual stress condition fast without destruction of material. Thereby, residual stress depth gradients can be determined simultaneously without removing material. In steel, gradients of up to 150 µm can be resolved in such a way. Furthermore, the application of high energy radiation permits determination of residual stresses of any available residual austenite contents. Results show significant dependence of transformation temperatures on the resulting residual stress level and distribution.

Collaboration


Dive into the Thomas Kannengiesser's collaboration.

Top Co-Authors

Avatar

Arne Kromm

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Michael Rhode

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Axel Griesche

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Dirk Schroepfer

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Jens Gibmeier

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonny Dixneit

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Eitan Dabah

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Thomas Boellinghaus

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Thomas Schaupp

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Michael Rethmeier

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Researchain Logo
Decentralizing Knowledge