Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Kuri is active.

Publication


Featured researches published by Thomas Kuri.


PLOS Pathogens | 2007

Coronavirus Non-Structural Protein 1 Is a Major Pathogenicity Factor: Implications for the Rational Design of Coronavirus Vaccines

Roland Züst; Luisa Cervantes-Barragan; Thomas Kuri; Gjon Blakqori; Friedemann Weber; Burkhard Ludewig; Volker Thiel

Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1). In cell culture, nsp1 of mouse hepatitis virus (MHV), like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN) receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.


PLOS Pathogens | 2011

The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors

Susanne Pfefferle; Julia Schöpf; Manfred Kögl; Caroline C. Friedel; Marcel A. Müller; Javier Carbajo-Lozoya; Thorsten Stellberger; Ekatarina von Dall’Armi; Petra Herzog; Stefan Kallies; Daniela Niemeyer; Vanessa Ditt; Thomas Kuri; Roland Züst; Ksenia Pumpor; Rolf Hilgenfeld; Frank Schwarz; Ralf Zimmer; Imke Steffen; Friedemann Weber; Volker Thiel; Georg Herrler; Heinz Jürgen Thiel; Christel Schwegmann-Weßels; Stefan Pöhlmann; Jürgen Haas; Christian Drosten; Albrecht von Brunn

Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.


Journal of Virology | 2010

Extracellular 2′-5′ Oligoadenylate Synthetase Stimulates RNase L-Independent Antiviral Activity: a Novel Mechanism of Virus-Induced Innate Immunity

Helle Kristiansen; Christina A. Scherer; Maralee Mcvean; Shawn P. Iadonato; Susanne Vends; Karthiga Thavachelvam; Thomas B. Steffensen; Kristy A. Horan; Thomas Kuri; Friedemann Weber; Søren R. Paludan; Rune Hartmann

ABSTRACT The 2′-5′ oligoadenylate synthetase (OAS) proteins are traditionally considered intracellular antiviral proteins. However, several studies demonstrate a correlation between the concentration of freely circulating OAS protein in sera from hepatitis C patients and their clinical prognosis. Here we demonstrate that extracellular OAS1 enters into cells and possesses a strong antiviral activity, both in vitro and in vivo, which is independent of RNase L. The OAS protein directly inhibits viral proliferation and does not require the activation of known antiviral signaling pathways. We propose that OAS produced by cells infected with viruses is released to the extracellular space, where it acts as a paracrine antiviral agent. Thus, the OAS protein represents the first direct antiviral compound released by virus-infected cells.


Journal of General Virology | 2011

The ADP-ribose-1 -monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses

Thomas Kuri; Klara K. Eriksson; Ákos Putics; Roland Züst; Eric J. Snijder; Andrew D. Davidson; Stuart G. Siddell; Volker Thiel; John Ziebuhr; Friedemann Weber

Several plus-strand RNA viruses encode proteins containing macrodomains. These domains possess ADP-ribose-1″-phosphatase (ADRP) activity and/or bind poly(ADP-ribose), poly(A) or poly(G). The relevance of these activities in the viral life cycle has not yet been resolved. Here, we report that genetically engineered mutants of severe acute respiratory syndrome coronavirus (SARS-CoV) and human coronavirus 229E (HCoV-229E) expressing ADRP-deficient macrodomains displayed an increased sensitivity to the antiviral effect of alpha interferon compared with their wild-type counterparts. The data suggest that macrodomain-associated ADRP activities may have a role in viral escape from the innate immune responses of the host.


Journal of Virology | 2010

Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63

Ilona Glowacka; Stephanie Bertram; Petra Herzog; Susanne Pfefferle; Imke Steffen; Marcus O. Muench; Graham Simmons; Heike Hofmann; Thomas Kuri; Friedemann Weber; Jutta Eichler; Christian Drosten; Stefan Pöhlmann

ABSTRACT The human coronaviruses (CoVs) severe acute respiratory syndrome (SARS)-CoV and NL63 employ angiotensin-converting enzyme 2 (ACE2) for cell entry. It was shown that recombinant SARS-CoV spike protein (SARS-S) downregulates ACE2 expression and thereby promotes lung injury. Whether NL63-S exerts a similar activity is yet unknown. We found that recombinant SARS-S bound to ACE2 and induced ACE2 shedding with higher efficiency than NL63-S. Shedding most likely accounted for the previously observed ACE2 downregulation but was dispensable for viral replication. Finally, SARS-CoV but not NL63 replicated efficiently in ACE2-positive Vero cells and reduced ACE2 expression, indicating robust receptor interference in the context of SARS-CoV but not NL63 infection.


PLOS ONE | 2012

Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination

Sjoerd H. E. van den Worm; Klara K. Eriksson; Jessika C. Zevenhoven; Friedemann Weber; Roland Züst; Thomas Kuri; Ronald Dijkman; Guo-hui Chang; Stuart G. Siddell; Eric J. Snijder; Volker Thiel; Andrew D. Davidson

Severe acute respiratory syndrome (SARS) is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV) that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime) as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV). Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs). In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E). Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.


Virology Journal | 2010

Species-independent bioassay for sensitive quantification of antiviral type I interferons

Thomas Kuri; Matthias Habjan; Nicola Penski; Friedemann Weber

BackgroundStudies of the host response to infection often require quantitative measurement of the antiviral type I interferons (IFN-α/β) in biological samples. The amount of IFN is either determined via its ability to suppress a sensitive indicator virus, by an IFN-responding reporter cell line, or by ELISA. These assays however are either time-consuming and lack convenient readouts, or they are rather insensitive and restricted to IFN from a particular host species.ResultsAn IFN-sensitive, Renilla luciferase-expressing Rift Valley fever virus (RVFV-Ren) was generated using reverse genetics. Human, murine and avian cells were tested for their susceptibility to RVFV-Ren after treatment with species-specific IFNs. RVFV-Ren was able to infect cells of all three species, and IFN-mediated inhibition of viral reporter activity occurred in a dose-dependent manner. The sensitivity limit was found to be 1 U/ml IFN, and comparison with a standard curve allowed to determine the activity of an unknown sample.ConclusionsRVFV-Ren replicates in cells of several species and is highly sensitive to pre-treatment with IFN. These properties allowed the development of a rapid, sensitive, and species-independent antiviral assay with a convenient luciferase-based readout.


Journal of General Virology | 2009

Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation

Thomas Kuri; Xiaonan Zhang; Matthias Habjan; Luis Martínez-Sobrido; Adolfo García-Sastre; Zhenghong Yuan; Friedemann Weber

SARS coronavirus (SARS-CoV) is known to efficiently suppress the induction of antiviral type I interferons (IFN-alpha/beta) in non-lymphatic cells through inhibition of the transcription factor IRF-3. Plasmacytoid dendritic cells, in contrast, respond to infection with production of high levels of IFNs. Here, we show that pretreatment of non-lymphatic cells with small amounts of IFN-alpha (IFN priming) partially overturns the block in IFN induction imposed by SARS-CoV. IFN priming combined with SARS-CoV infection substantially induced genes for IFN induction, IFN signalling, antiviral effector proteins, ubiquitination and ISGylation, antigen presentation and other cytokines and chemokines, whereas each individual treatment had no major effect. Curiously, however, despite this typical IFN response, neither IRF-3 nor IRF-7 was transported to the nucleus as a sign of activation. Taken together, our results suggest that (i) IFN, as it is produced by plasmacytoid dendritic cells, could enable tissue cells to launch a host response to SARS-CoV, (ii) IRF-3 and IRF-7 may be active at subdetectable levels, and (iii) SARS-CoV does not activate IRF-7.


Virulence | 2010

Interferon interplay helps tissue cells to cope with SARS-coronavirus infection.

Thomas Kuri; Friedemann Weber

SARS coronavirus (SARS-CoV), the causative agent of severe acute respiratory syndrome, is a versatile pathogen armed with a host of factors countering the antiviral type I interferon (IFN) system. Hence, tissue cells infected with SARS-CoV are unable to launch an IFN response. Plasmacytoid dendritic cells, however, produce high levels of IFN after infection. We recently demonstrated that minute amounts of IFN applied before infection (IFN priming) can ameliorate the IFN response of tissue cells to SARS-CoV. IFN priming of SARS-CoV-infected cells activated genes for IFN transcription, IFN signaling, antiviral effector proteins, ubiquitinylation and ISGylation, antigen presentation, and other cytokines and chemokines, whereas IFN treatment or infection alone had no major effect. Thus, the IFN which is produced by plasmacytoid dendritic cells could enable tissue cells to at least partially overturn the SARS-CoV-induced block in innate immune activation.


Virology | 2007

The intracellular sites of early replication and budding of SARS-coronavirus.

Silke Stertz; Mike Reichelt; Martin Spiegel; Thomas Kuri; Luis Martínez-Sobrido; Adolfo García-Sastre; Friedemann Weber; Georg Kochs

Collaboration


Dive into the Thomas Kuri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Züst

University of St. Gallen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Pfefferle

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge