Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kent Jørgensen is active.

Publication


Featured researches published by Kent Jørgensen.


Chemistry and Physics of Lipids | 1994

Dynamical order and disorder in lipid bilayers

Ole G. Mouritsen; Kent Jørgensen

Various order and disorder phenomena in lipid bilayers are considered as they arise due to the very many-particle character of the bilayer. Particular attention is paid to dynamically maintained order in terms of lateral density- and compositional fluctuations that lead to dynamic heterogeneity, local structure, and lipid-domain formation on length scales of 10-1000 A. The influence of cholesterol and various drugs on the local structure is described. A discussion is presented of the possible role played by lipid order and disorder phenomena for the functional dynamics of membranes.


Pharmaceutical Research | 1998

A new look at lipid-membrane structure in relation to drug research

Ole G. Mouritsen; Kent Jørgensen

Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design of new drugs and drug-delivery systems therefore requires insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality.


Biochimica et Biophysica Acta | 2003

Secreted phospholipase A2 as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue

Jesper Davidsen; Kent Jørgensen; Thomas Lars Andresen; Ole G. Mouritsen

Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A(2) (PLA(2)) at the diseased target tissue. The secretory PLA(2) hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA(2) only at the diseased target sites, such as inflamed or cancerous tissue.


Biochimica et Biophysica Acta | 1991

A GENERAL MODEL FOR THE INTERACTION OF FOREIGN MOLECULES WITH LIPID MEMBRANES : DRUGS AND ANAESTHETICS

Kent Jørgensen; John Hjort Ipsen; Ole G. Mouritsen; Donald Bennett; Martin J. Zuckermann

A general microscopic interaction model is proposed to describe the changes in the physical properties of phospholipid bilayer membranes due to foreign molecules which, to different degrees, partition between the membrane phases and the aqueous environment. The model is a multi-state lattice model for the main phase transition of lipid bilayers and the foreign molecules are assumed to intercalate as interstitials in the lattice. By varying the model parameters, the diversity in the thermodynamic properties of the model is explored using computer-simulation techniques which faithfully take account of the thermal fluctuations. The calculations are performed in both the canonical and the grand canonical ensembles corresponding to the cases where the concentration of foreign molecules in the membrane is either fixed or varies as the external conditions are changed. A classification of the diverse thermal behaviour, specifically with regard to the phase diagram, the specific heat, the density fluctuations, and the partition coefficient, is suggested with a view to rationalizing a large body of experimental measurements of the effects of different foreign molecules on membrane properties. The range of foreign molecules considered includes compounds as diverse as volatile general anaesthetics like halothane, cocaine-derived local anaesthetics like procaine, calcium-channel blocking drugs like verapamil, antidepressants like chlorpromazine, and anti-cancer agents like adriamycin.


Biophysical Journal | 1995

Phase separation dynamics and lateral organization of two-component lipid membranes

Kent Jørgensen; Ole G. Mouritsen

The non-equilibrium dynamic ordering process of coexisting phases has been studied for two-component lipid bilayers composed of saturated di-acyl phospholipids with different acyl chain lengths, such as DC14PC-DC18PC and DC12PC-DC18PC. By means of a microscopic interaction model and computer-simulation techniques the non-equilibrium properties of these two mixtures have been determined with particular attention paid to the effects of the non-equilibrium ordering process on membrane heterogeneity in terms of local and global lateral membrane organization. The results reveal that a sudden temperature change that takes the lipid mixture from the fluid one-phase region into the gel-fluid phase-coexistence region leads to the formation of a large number of small lipid domains which slowly are growing in time. The growth of the lipid domains, which is limited by long-range diffusion of the lipid molecules within the two-dimensional membrane plane, gives rise to the existence of a highly heterogeneous percolative-like structure with a network of interfacial regions that have properties different from those of the phase-separated gel and fluid bulk phases. The results, which are discussed in relation to recent experimental observations interpreted in terms of a percolative-like membrane structure within the two phase region (Almeida, P.F.F., Vaz, W.L.C., and T.E. Thompson. 1992. Biochemistry 31:7198-7210), suggest that non-equilibrium effects may influence lipid domain formation and membrane organization on various length and time scales. Such effects might be of importance in relation to membrane processes that require molecular mobility of the membrane components in restricted geometrical environments of the compartmentalized lipid membrane.


Biophysical Journal | 1990

Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length decreases

John Hjort Ipsen; Kent Jørgensen; Ole G. Mouritsen

A systematic computer simulation study is conducted for a model of the main phase transition of fully hydrated saturated diacyl phosphatidylcholine bilayers (DMPC, DPPC, and DSPC). With particular focus on the fluctuation effects on the thermal properties in the transition region, the study yields data for the specific heat, the lateral compressibility, and the lipid-domain size distribution. Via a simple model assumption the transmembrane passive ion permeability is derived from the lipid-domain interfacial measure. A comparative analysis of the various data shows, in agreement with a number of experiments, that the lateral density fluctuations and hence the response functions increase as the acyl-chain length is decreased.


Biophysical Journal | 2002

Ripples and the Formation of Anisotropic Lipid Domains: Imaging Two-Component Supported Double Bilayers by Atomic Force Microscopy

Chad Leidy; Thomas Kaasgaard; John H. Crowe; Ole G. Mouritsen; Kent Jørgensen

Direct visualization of the fluid-phase/ordered-phase domain structure in mica-supported bilayers composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphocholine mixtures is performed with atomic force microscopy. The system studied is a double bilayer supported on a mica surface in which the top bilayer (which is not in direct contact with the mica) is visualized as a function of temperature. Because the top bilayer is not as restricted by the interactions with the surface as single supported bilayers, its behavior is more similar to a free-standing bilayer. Intriguing straight-edged anisotropic fluid-phase domains were observed in the fluid-phase/ordered-phase coexistence temperature range, which resemble the fluid-phase/ordered-phase domain patterns observed in giant unilamellar vesicles composed of such phospholipid mixtures. With the high resolution provided by atomic force microscopy, we investigated the origin of these anisotropic lipid domain patterns, and found that ripple phase formation is directly responsible for the anisotropic nature of these domains. The nucleation and growth of fluid-phase domains are found to be directed by the presence of ripples. In particular, the fluid-phase domains elongate parallel to the ripples. The results show that ripple phase formation may have implications for domain formation in biological systems.


Biophysical Journal | 2001

Lateral Organization and Domain Formation in a Two-Component Lipid Membrane System

Chad Leidy; Willem F. Wolkers; Kent Jørgensen; Ole G. Mouritsen; John H. Crowe

The thermodynamic phase behavior and lateral lipid membrane organization of unilamellar vesicles made from mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) were investigated by fluorescence resonance energy transfer (FRET) as a function of temperature and composition. This was done by incorporating a headgroup-labeled lipid donor (NBD-DPPE) and acceptor (N-Rh-DPPE) in low concentrations into the binary mixtures. Two instances of increased energy transfer efficiency were observed close to the phase lines in the DMPC/DSPC phase diagram. The increase in energy transfer efficiency was attributed to a differential preference of the probes for dynamic and fluctuating gel/fluid coexisting phases. This differential preference causes the probes to segregate (S. Pedersen, K. Jørgensen, T. R. Baekmark, and O. G. Mouritsen, 1996, Biophys. J. 71:554-560). The observed increases in energy transfer match with the boundaries of the DMPC/DSPC phase diagram, as measured by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). We propose that the two instances of probe segregation are due to the presence of DMPC-rich and DSPC-rich domains, which form a dynamic structure of gel/fluid coexisting phases at two different temperatures. Monitoring the melting profile of each lipid component independently by FTIR shows that the domain structure is formed by DMPC-rich and DSPC-rich domains rather than by pure DMPC and DSPC domains.


Biophysical Journal | 2003

Temperature-Controlled Structure and Kinetics of Ripple Phases in One- and Two-Component Supported Lipid Bilayers

Thomas Kaasgaard; Chad Leidy; John H. Crowe; Ole G. Mouritsen; Kent Jørgensen

Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphatidylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers. The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating direction and the disappearance and formation of ripples was visualized. It was found that both the disappearance and formation of ripples take place virtually one ripple at a time, thereby demonstrating the highly anisotropic nature of the ripple phase. Furthermore, when a two-component DMPC-DSPC mixture was heated from the ripple phase and into the ripple-phase/fluid-phase coexistence temperature region, the AFM images revealed that several dynamic properties of the ripple phase are important for the melting behavior of the lipid mixture. Onset of melting is observed at grain boundaries between different ripple types and different ripple orientations, and the longer-wavelength metastable ripple phase melts before the shorter-wavelength stable ripple phase. Moreover, it was observed that the ripple phase favors domain growth along the ripple direction and is responsible for creating straight-edged domains with 60 degrees and 120 degrees angles, as reported previously.


Biochimica et Biophysica Acta | 1991

The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: Application to anaesthetics and insecticides

Kent Jørgensen; John Ipsen; Ole G. Mouritsen; Don Bennett; Martin J. Zuckermann

An extensive computer-simulation study is performed on a simple but general molecular model recently proposed (Jørgensen et al. (1991) Biochem. Biophys. Acta 1062, 277-238) to describe foreign molecules interacting with lipid bilayers. The model is a multi-state lattice model of the main bilayer transition in which the foreign molecules are assumed to intercalate at interstitial lattice positions. Specific as well as non-specific interactions between the foreign molecules and the lipid acyl chains are considered. Particular attention is paid to the fluctuating properties of the membrane and how the presence of the foreign molecules modulates these fluctuations in the transition region. By means of computer-stimulation techniques, a detailed account is given of the macroscopic as well as microscopic consequences of the fluctuations. The macroscopic consequences of the fluctuations are seen in the thermal anomalies of the specific heat and the passive trans-membrane permeability. Microscopically, the fluctuations manifest themselves in lipid-domain formation in the transition region which implies an effective dynamic membrane heterogeneity. Within the model it is found that certain anaesthetics and insecticides which are characterised by specific interactions with the lipids have a strong effect on the heterogeneity of the membrane inducing regions of locally very high concentration of the foreign molecules. This leads to a broadening of the specific heat peak and a maximum in the membrane/water partition coefficient. These results are in accordance with available experimental data for volatile general anaesthetics like halothane, local anaesthetics like cocain derivatives, and insecticides like lindane.

Collaboration


Dive into the Kent Jørgensen's collaboration.

Top Co-Authors

Avatar

Ole G. Mouritsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Jesper Davidsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Thomas Lars Andresen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Thomas Kaasgaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Günther H. Peters

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

John Hjort Ipsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christa Trandum

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge