Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Lecuit is active.

Publication


Featured researches published by Thomas Lecuit.


Nature Reviews Molecular Cell Biology | 2007

Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis

Thomas Lecuit; Pierre-François Lenne

Embryonic morphogenesis requires the execution of complex mechanisms that regulate the local behaviour of groups of cells. The orchestration of such mechanisms has been mainly deciphered through the identification of conserved families of signalling pathways that spatially and temporally control cell behaviour. However, how this information is processed to control cell shape and cell dynamics is an open area of investigation. The framework that emerges from diverse disciplines such as cell biology, physics and developmental biology points to adhesion and cortical actin networks as regulators of cell surface mechanics. In this context, a range of developmental phenomena can be explained by the regulation of cell surface tension.


Nature | 2004

Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation

Claire Bertet; Lawrence Sulak; Thomas Lecuit

Shaping a developing organ or embryo relies on the spatial regulation of cell division and shape. However, morphogenesis also occurs through changes in cell-neighbourhood relationships produced by intercalation. Intercalation poses a special problem in epithelia because of the adherens junctions, which maintain the integrity of the tissue. Here we address the mechanism by which an ordered process of cell intercalation directs polarized epithelial morphogenesis during germ-band elongation, the developmental elongation of the Drosophila embryo. Intercalation progresses because junctions are spatially reorganized in the plane of the epithelium following an ordered pattern of disassembly and reassembly. The planar remodelling of junctions is not driven by external forces at the tissue boundaries but depends on local forces at cell boundaries. Myosin II is specifically enriched in disassembling junctions, and its planar polarized localization and activity are required for planar junction remodelling and cell intercalation. This simple cellular mechanism provides a general model for polarized morphogenesis in epithelial organs.


Nature Cell Biology | 2008

Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis.

Matteo Rauzi; Pascale Verant; Thomas Lecuit; Pierre-François Lenne

The morphogenesis of developing embryos and organs relies on the ability of cells to remodel their contacts with neighbouring cells. Using quantitative modelling and laser nano-dissection, we probed the mechanics of a morphogenetic process, the elongation of Drosophila melanogaster embryos, which results from polarized cell neighbour exchanges. We show that anisotropy of cortical tension at apical cell junctions is sufficient to drive tissue elongation. We estimated its value through comparisons between in silico and in vivo data using various tissue descriptors. Nano-dissection of the actomyosin network indicates that tension is anisotropically distributed and depends on myosin II accumulation. Junction relaxation after nano-dissection also suggests that cortical elastic forces are dominant in this process. Interestingly, fluctuations in vertex position (points where three or more cells meet) facilitate neighbour exchanges. We delineate the contribution of subcellular tensile activity polarizing junction remodelling, and the permissive role of vertex fluctuations during tissue elongation.


Nature | 2010

Planar polarized actomyosin contractile flows control epithelial junction remodelling

Matteo Rauzi; Pierre-François Lenne; Thomas Lecuit

Force generation by Myosin-II motors on actin filaments drives cell and tissue morphogenesis. In epithelia, contractile forces are resisted at apical junctions by adhesive forces dependent on E-cadherin, which also transmits tension. During Drosophila embryonic germband extension, tissue elongation is driven by cell intercalation, which requires an irreversible and planar polarized remodelling of epithelial cell junctions. We investigate how cell deformations emerge from the interplay between force generation and cortical force transmission during this remodelling in Drosophila melanogaster. The shrinkage of dorsal–ventral-oriented (‘vertical’) junctions during this process is known to require planar polarized junctional contractility by Myosin II (refs 4, 5, 7, 12). Here we show that this shrinkage is not produced by junctional Myosin II itself, but by the polarized flow of medial actomyosin pulses towards ‘vertical’ junctions. This anisotropic flow is oriented by the planar polarized distribution of E-cadherin complexes, in that medial Myosin II flows towards ‘vertical’ junctions, which have relatively less E-cadherin than transverse junctions. Our evidence suggests that the medial flow pattern reflects equilibrium properties of force transmission and coupling to E-cadherin by α-Catenin. Thus, epithelial morphogenesis is not properly reflected by Myosin II steady state distribution but by polarized contractile actomyosin flows that emerge from interactions between E-cadherin and actomyosin networks.


Nature | 1997

Proximal–distal axis formation in the Drosophila leg

Thomas Lecuit; Stephen M. Cohen

Limb development requires the formation of a proximal–distal axis perpendicular to the main anterior–posterior and dorsal–ventral body axes. The secreted signalling proteins Decapentaplegic and Wingless act in a concentration-dependent manner to organize the proximal–distal axis. Discrete domains of proximal–distal gene expression are defined by different thresholds of Decapentaplegic and Wingless activities. Subsequent modulation of the relative sizes of these domains by growth of the leg is required to form the mature pattern.


Nature | 2008

A two-tiered mechanism for stabilization and immobilization of E-cadherin

Matthieu Cavey; Matteo Rauzi; Pierre-François Lenne; Thomas Lecuit

Epithelial tissues maintain a robust architecture which is important for their barrier function, but they are also remodelled through the reorganization of cell–cell contacts. Tissue stability requires intercellular adhesion mediated by E-cadherin, in particular its trans-association in homophilic complexes supported by actin filaments through β- and α-catenin. How α-catenin dynamic interactions between E-cadherin/β-catenin and cortical actin control both stability and remodelling of adhesion is unclear. Here we focus on Drosophila homophilic E-cadherin complexes rather than total E-cadherin, including diffusing ‘free’ E-cadherin, because these complexes are a better proxy for adhesion. We find that E-cadherin complexes partition in very stable microdomains (that is, bona fide adhesive foci which are more stable than remodelling contacts). Furthermore, we find that stability and mobility of these microdomains depend on two actin populations: small, stable actin patches concentrate at homophilic E-cadherin clusters, whereas a rapidly turning over, contractile network constrains their lateral movement by a tethering mechanism. α-Catenin controls epithelial architecture mainly through regulation of the mobility of homophilic clusters and it is largely dispensable for their stability. Uncoupling stability and mobility of E-cadherin complexes suggests that stable epithelia may remodel through the regulated mobility of very stable adhesive foci.


Annual Review of Cell and Developmental Biology | 2011

Force Generation, Transmission, and Integration during Cell and Tissue Morphogenesis

Thomas Lecuit; Pierre-François Lenne; Edwin Munro

Cell shape changes underlie a large set of biological processes ranging from cell division to cell motility. Stereotyped patterns of cell shape changes also determine tissue remodeling events such as extension or invagination. In vitro and cell culture systems have been essential to understanding the fundamental physical principles of subcellular mechanics. These are now complemented by studies in developing organisms that emphasize how cell and tissue morphogenesis emerge from the interplay between force-generating machines, such as actomyosin networks, and adhesive clusters that transmit tensile forces at the cell cortex and stabilize cell-cell and cell-substrate interfaces. Both force production and transmission are self-organizing phenomena whose adaptive features are essential during tissue morphogenesis. A new era is opening that emphasizes the similarities of and allows comparisons between distant dynamic biological phenomena because they rely on core machineries that control universal features of cytomechanics.


Science | 2013

Mechanics of epithelial tissue homeostasis and morphogenesis.

Charlène Guillot; Thomas Lecuit

Epithelia are robust tissues that support the structure of embryos and organs and serve as effective barriers against pathogens. Epithelia also chemically separate different physiological environments. These vital functions require tight association between cells through the assembly of junctions that mechanically stabilize the tissue. Remarkably, epithelia are also dynamic and can display a fluid behavior. Cells continuously die or divide, thereby allowing functional tissue homeostasis. Epithelial cells can change shape or intercalate as tissues deform during morphogenesis. We review the mechanical basis of tissue robustness and fluidity, with an emphasis on the pivotal role of junction dynamics. Tissue fluidity emerges from local active stresses acting at cell interfaces and allows the maintenance of epithelial organization during morphogenesis and tissue renewal.


Cold Spring Harbor Perspectives in Biology | 2009

Molecular Bases of Cell–Cell Junctions Stability and Dynamics

Matthieu Cavey; Thomas Lecuit

Epithelial cell-cell junctions are formed by apical adherens junctions (AJs), which are composed of cadherin adhesion molecules interacting in a dynamic way with the cortical actin cytoskeleton. Regulation of cell-cell junction stability and dynamics is crucial to maintain tissue integrity and allow tissue remodeling throughout development. Actin filament turnover and organization are tightly controlled together with myosin-II activity to produce mechanical forces that drive the assembly, maintenance, and remodeling of AJs. In this review, we will discuss these three distinct stages in the lifespan of cell-cell junctions, using several developmental contexts, which illustrate how mechanical forces are generated and transmitted at junctions, and how they impact on the integrity and the remodeling of cell-cell junctions.


Nature Cell Biology | 2011

Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis

Romain Levayer; Anne Pelissier-Monier; Thomas Lecuit

E-cadherin plays a pivotal role in epithelial morphogenesis. It controls the intercellular adhesion required for tissue cohesion and anchors the actomyosin-driven tension needed to change cell shape. In the early Drosophila embryo, Myosin-II (Myo-II) controls the planar polarized remodelling of cell junctions and tissue extension. The E-cadherin distribution is also planar polarized and complementary to the Myosin-II distribution. Here we show that E-cadherin polarity is controlled by the polarized regulation of clathrin- and dynamin-mediated endocytosis. Blocking E-cadherin endocytosis resulted in cell intercalation defects. We delineate a pathway that controls the initiation of E-cadherin endocytosis through the regulation of AP2 and clathrin coat recruitment by E-cadherin. This requires the concerted action of the formin Diaphanous (Dia) and Myosin-II. Their activity is controlled by the guanine exchange factor RhoGEF2, which is planar polarized and absent in non-intercalating regions. Finally, we provide evidence that Dia and Myo-II control the initiation of E-cadherin endocytosis by regulating the lateral clustering of E-cadherin.

Collaboration


Dive into the Thomas Lecuit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matteo Rauzi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanny Pilot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Romain Levayer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Cohen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Hampoelz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Loïc Le Goff

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge