Thomas M. Koller
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas M. Koller.
Journal of Physical Chemistry B | 2013
Thomas M. Koller; Michael H. Rausch; Javier Ramos; Peter S. Schulz; Peter Wasserscheid; Ioannis G. Economou; Andreas P. Fröba
In the present study, the thermophysical properties of the tetracyanoborate-based ionic liquids (ILs) 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][B(CN)4]) and 1-hexyl-3-methylimidazolium tetracyanoborate ([HMIM][B(CN)4]) obtained by both experimental methods and molecular dynamics (MD) simulations are presented. Conventional experimental techniques were applied for the determination of refractive index, density, interfacial tension, and self-diffusion coefficients for [HMIM][B(CN)4] at atmospheric pressure in the temperature range from 283.15 to 363.15 K. In addition, surface light scattering (SLS) experiments provided accurate viscosity and interfacial tension data. As no complete molecular parametrization was available for the MD simulations of [HMIM][B(CN)4], our recently developed united-atom force field for [EMIM][B(CN)4] was partially transferred to the homologous IL [HMIM][B(CN)4]. Deviations between our simulated and experimental data for the equilibrium properties are less than ±0.3% in the case of density and less than ±8% in the case of interfacial tension for both ILs. Furthermore, the calculated and measured data for the transport properties viscosity and self-diffusion coefficient are in good agreement, with deviations of less than ±30% over the whole temperature range. In addition to a comparison with the literature, the influence of varying cation chain length on thermophysical properties of [EMIM][B(CN)4] and [HMIM][B(CN)4] is discussed.
Molecular Physics | 2012
Thomas M. Koller; Javier Ramos; Nuno M. Garrido; Andreas P. Fröba; Ioannis G. Economou
Three united-atom (UA) force fields are presented for the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, abbreviated as [EMIM]+[B(CN)4]−. The atomistic charges were calculated based on the restrained electrostatic potential (RESP) of the isolated ions (abbreviated as force field 1, FF-1) and the ensemble averaged RESP (EA-RESP) method from the most stable ion pair configurations obtained by MP2/6-31G*+ calculations (abbreviated as FF-2 and FF-3). Non-electrostatic parameters for both ions were taken from the literature and Lennard–Jones parameters for the [B(CN)4]− anion were fitted in two different ways to reproduce the experimental liquid density. Molecular dynamics (MD) simulations were performed over a wide temperature range to identify the effect of the electrostatic and non-electrostatic potential on the liquid density and on transport properties such as self-diffusion coefficient and viscosity. Predicted liquid densities for the three parameter sets deviate less than 0.5% from experimental data. The molecular mobility with FF-2 and FF-3 using reduced charge sets is appreciably faster than that obtained with FF-1. FF-3 presents a refined non-electrostatic potential that leads to a notable improvement in both transport properties when compared to experimental data.
Journal of Physical Chemistry B | 2014
Andreas Heller; Thomas M. Koller; Michael H. Rausch; Matthieu S.H. Fleys; A.N. René Bos; Gerard P. van der Laan; Zoi A. Makrodimitri; Ioannis G. Economou; Andreas P. Fröba
It is demonstrated that thermal and mutual diffusivities of binary mixtures of n-octacosane (n-C28H58) with carbon monoxide (CO), hydrogen (H2), and water (H2O) are simultaneously accessible by dynamic light scattering (DLS). As the light-scattering signals originating from thermal and concentration fluctuations appear in similar time scales, different data evaluation strategies were tested to achieve minimum uncertainties in the resulting transport properties. To test the agreement of the respective theoretical model with the DLS signals in the regression, an improved multifit procedure is introduced. With the selected data evaluation strategy, uncertainties of 4 to 15% and 4 to 30% in the thermal and mutual diffusivities, respectively, could be obtained for the binary mixtures. The mutual diffusivities for the mixtures measured at temperatures ranging from 398 to 523 K and pressures of 5 to 30 bar at saturation conditions are in good agreement with molecular dynamics simulations and data from the literature.
Journal of Physical Chemistry B | 2014
Michael H. Rausch; Andreas Heller; Jonas Herbst; Thomas M. Koller; Matthias Bahlmann; Peter S. Schulz; Peter Wasserscheid; Andreas P. Fröba
Ionic liquids (ILs) are promising solvents for gas separation processes such as carbon dioxide (CO2) capture from flue gases. For the design of corresponding processes and apparatus, thermophysical properties of ILs containing dissolved gases are required. In the present study, it is demonstrated that with a single optical setup, mutual and thermal diffusivities as well as refractive indices can be measured quasi-simultaneously for such mixtures. Dynamic light scattering (DLS) from bulk fluids was applied to determine mutual and thermal diffusivities for mixtures of 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][C(CN)3]) or 1-butyl-3-methylimidazolium tetracyanoborate ([BMIM][B(CN)4]) with dissolved CO2 at temperatures from 303.15 to 333.15 K and pressures between 2 and 26 bar in macroscopic thermodynamic equilibrium. Good agreement with literature data and only slight differences between the diffusivities measured for the two systems at the same temperature and comparable mole fractions of CO2 were found. Increasing mutual diffusivities with increasing mole fractions of CO2 are consistent with decreasing viscosities reported for other IL-CO2 mixtures in the literature and can be attributed to weakening of molecular interactions by the dissolved gas. For the conditions studied, no dependence of the thermal diffusivity on the temperature or the mole fraction of CO2 could be found.
Journal of Physical Chemistry B | 2015
Thomas M. Koller; Andreas Heller; Michael H. Rausch; Peter Wasserscheid; Ioannis G. Economou; Andreas P. Fröba
Ionic liquids (ILs) are possible working fluids for the separation of carbon dioxide (CO2) from flue gases. For evaluating their performance in such processes, reliable mutual-diffusivity data are required for mixtures of ILs with relevant flue gas components. In the present study, dynamic light scattering (DLS) and molecular dynamics (MD) simulations were used for the investigation of the molecular diffusion in binary mixtures of the IL 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][B(CN)4]) with the dissolved gases carbon dioxide, nitrogen, carbon monoxide, hydrogen, methane, oxygen, and hydrogen sulfide at temperatures from 298.15 to 363.15 K and pressures up to 63 bar. At conditions approaching infinite dilution of a gas, the Fick mutual diffusivity of the mixture measured by DLS and the self-diffusivity of the corresponding gas calculated by MD simulations match, which could be generally found within combined uncertainties. The obtained diffusivities are in agreement with literature data for the same or comparable systems as well as with the general trend of increasing diffusivities for decreasing IL viscosities. The DLS and MD results reveal distinctly larger molecular diffusivities for [EMIM][B(CN)4]-hydrogen mixtures compared to mixtures with all other gases. This behavior results in the failure of an empirical correlation with the molar volumes of the gases at their normal boiling points. The DLS experiments also showed that there is no noticeable influence of the dissolved gas and temperature on the thermal diffusivity of the studied systems.
Journal of Physical Chemistry B | 2017
Thomas M. Koller; Javier Ramos; Peter S. Schulz; Ioannis G. Economou; Michael H. Rausch; Andreas P. Fröba
Thermophysical properties of low-viscosity ionic liquids (ILs) based on the tetracyanoborate ([B(CN)4]-) anion carrying a homologous series of 1-alkyl-3-methylimidazolium ([AMIM]+) cations [EMIM]+ (ethyl), [BMIM]+ (butyl), [HMIM]+ (hexyl), [OMIM]+ (octyl), and [DMIM]+ (decyl) were investigated by experimental methods and molecular dynamics (MD) simulations at atmospheric pressure and various temperatures. Spectroscopic methods based on nuclear magnetic resonance and surface light scattering were applied to measure the ion self-diffusion coefficients and dynamic viscosity, respectively. In terms of MD simulations, a nonpolarizable molecular model for [EMIM][B(CN)4] developed by optimization to experimental data was transferred to the other homologous ILs. For the appropriate description of the inter- and intramolecular interactions, precise and approximate force fields (FFs) were tested regarding their transferability within the homologous IL series, aiming at reducing the computational effort in molecular simulations. It is shown that at comparable simulated and experimental densities, the calculated and measured data for viscosity and self-diffusion coefficients of the ILs agree well mostly within combined uncertainties, but deviate stronger for longer-chained ILs using an overly coarse FF model. For the [B(CN)4]--based ILs studied, a comparison with literature data, the influence of varying alkyl chain length in the cation on their structural and thermophysical properties, and a correlation between self-diffusivity and viscosity are discussed.
Journal of Physical Chemistry B | 2018
Tobias Klein; Wenchang Wu; Michael H. Rausch; Cédric Giraudet; Thomas M. Koller; Andreas P. Fröba
This study contributes to a fundamental understanding of how the liquid structure in a model system consisting of weakly associative n-hexane ( n-C6H14) and carbon dioxide (CO2) influences the Fickian diffusion process. For this, the benefits of light scattering experiments and molecular dynamics (MD) simulations at macroscopic thermodynamic equilibrium were combined synergistically. Our reference Fickian diffusivities measured by dynamic light scattering (DLS) revealed an unusual trend with increasing CO2 mole fractions up to about 70 mol %, which agrees with our simulation results. The molecular impacts on the Fickian diffusion were analyzed by MD simulations, where kinetic contributions related to the Maxwell-Stefan (MS) diffusivity and structural contributions quantified by the thermodynamic factor were studied separately. Both the MS diffusivity and the thermodynamic factor indicate the deceleration of Fickian diffusion compared to an ideal mixture behavior. Computed radial distribution functions as well as a significant blue-shift of the CH stretching modes of n-C6H14 identified by Raman spectroscopy show that the slowing down of the diffusion is caused by a structural organization in the binary mixtures over a broad concentration range in the form of self-associated n-C6H14 and CO2 domains. These networks start to form close to the infinite dilution limits and seem to have their largest extent at a solute-solvent transition point at about 70 mol % CO2. The current results not only improve the general understanding of mass diffusion in liquids but also serve to develop sound prediction models for Fick diffusivities.
Journal of Physical Chemistry B | 2018
Cédric Giraudet; Tobias Klein; Guanjia Zhao; Michael H. Rausch; Thomas M. Koller; Andreas P. Fröba
In the present study, dynamic light scattering (DLS) experiments and molecular dynamics (MD) simulations were used for the investigation of the molecular diffusion in binary mixtures of liquids with dissolved gases at macroscopic thermodynamic equilibrium. Model systems based on the n-alkane n-hexane or n-decane with dissolved hydrogen, helium, nitrogen, or carbon monoxide were studied at temperatures between 303 and 423 K and at gas mole fractions below 0.06. With DLS, the relaxation behavior of microscopic equilibrium fluctuations in concentration and temperature is analyzed to determine simultaneously mutual and thermal diffusivity in an absolute way. The present measurements document that even for mole gas fractions of 0.007 and Lewis numbers close to 1, reliable mutual diffusivities with an average expanded uncertainty ( k = 2) of 13% can be obtained. By use of suitable molecular models for the mixture components, the self-diffusion coefficient of the gases was determined by MD simulations with an averaged expanded uncertainty ( k = 2) of 7%. The DLS experiments showed that the thermal diffusivity of the studied systems is not affected by the dissolved gas and agrees with the reference data for the pure n-alkanes. In agreement with theory, mutual diffusivities and self-diffusivities were found to be equal mostly within combined uncertainties at conditions approaching infinite dilution of the gas. Our DLS and MD results, representing the first available data for the present systems, reveal distinctly larger mass diffusivities for mixtures containing hydrogen or helium compared to mixtures containing nitrogen or carbon monoxide. On the basis of the broad range of mass diffusivities of the studied gas-liquid systems covering about 2 orders of magnitude from about 10-9 to 10-7 m2·s-1, effects of the solvent and solute properties on the temperature-dependent mass diffusivities are discussed. This contributed to the development of a simple semiempirical correlation for the mass diffusivity of the studied gases dissolved in n-alkanes of varying chain length at infinite dilution as a function of temperature. The generalized expression requiring only information on the kinematic viscosity and molar mass of the pure solvent as well as the molar mass and acentric factor of the solute represents the database from this work and further literature with an absolute average deviation of about 11%.
Journal of Physical Chemistry B | 2017
Thomas M. Koller; Tobias Klein; Jiaqi Chen; Ahmad Kalantar; Gerard P. van der Laan; Michael H. Rausch; Andreas P. Fröba
For the first time, we demonstrate that it is possible to simultaneously analyze microscopic fluctuations at the surface and in the bulk of a binary liquid mixture by dynamic light scattering in macroscopic thermodynamic equilibrium. For a model system containing n-octacosane and ethanol, three individual signals distinguishable in the time-resolved analysis of the scattered light intensity appear on different time scales. One oscillatory signal from surface fluctuations at the vapor-liquid interface in the short-time range and two exponential Rayleigh signals from fluctuations in temperature and concentration in the bulk of fluid in the long-time range could be associated with hydrodynamic modes. This microscopic information allows for a simultaneous determination of the macroscopic properties interfacial tension, kinematic viscosity, thermal diffusivity, and mutual diffusivity within a single experimental run. The presented approach represents a worthwhile strategy, for example, in the context of sensor development for an effective multiproperty determination of fluid systems.
Journal of Chemical & Engineering Data | 2012
Thomas M. Koller; Michael H. Rausch; Peter S. Schulz; Markus E. M. Berger; Peter Wasserscheid; Ioannis G. Economou; Alfred Leipertz; Andreas P. Fröba