Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Maere is active.

Publication


Featured researches published by Thomas Maere.


Water Research | 2010

The cost of a large-scale hollow fibre MBR

Bart Verrecht; Thomas Maere; Ingmar Nopens; Christoph Brepols; Simon J. Judd

A cost sensitivity analysis was carried out for a full-scale hollow fibre membrane bioreactor to quantify the effect of design choices and operational parameters on cost. Different options were subjected to a long term dynamic influent profile and evaluated using ASM1 for effluent quality, aeration requirements and sludge production. The results were used to calculate a net present value (NPV), incorporating both capital expenditure (capex), based on costs obtained from equipment manufacturers and full-scale plants, and operating expenditure (opex), accounting for energy demand, sludge production and chemical cleaning costs. Results show that the amount of contingency built in to cope with changes in feedwater flow has a large impact on NPV. Deviation from a constant daily flow increases NPV as mean plant utilisation decreases. Conversely, adding a buffer tank reduces NPV, since less membrane surface is required when average plant utilisation increases. Membrane cost and lifetime is decisive in determining NPV: an increased membrane replacement interval from 5 to 10 years reduces NPV by 19%. Operation at higher SRT increases the NPV, since the reduced costs for sludge treatment are offset by correspondingly higher aeration costs at higher MLSS levels, though the analysis is very sensitive to sludge treatment costs. A higher sustainable flux demands greater membrane aeration, but the subsequent opex increase is offset by the reduced membrane area and the corresponding lower capex.


Bioresource Technology | 2012

Critical review of membrane bioreactor models - Part 1: Biokinetic and filtration models

Wouter Naessens; Thomas Maere; Ingmar Nopens

Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can significantly benefit from mathematical modelling. In this paper, the vast literature on modelling MBR biokinetics and filtration is critically reviewed. It was found that models cover the wide range of empirical to detailed mechanistic descriptions and have mainly been used for knowledge development and to a lesser extent for system optimisation/control. Moreover, studies are still predominantly performed at lab or pilot scale. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested.


Bioresource Technology | 2012

Critical review of membrane bioreactor models – Part 2: Hydrodynamic and integrated models

Wouter Naessens; Thomas Maere; Nicolas Rios Ratkovich; Sreepriya Vedantam; Ingmar Nopens

Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical modelling. In this paper, the vast literature on hydrodynamic and integrated MBR modelling is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones including costs are leaning towards optimisation. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested.


Water Research | 2010

Model-based energy optimisation of a small-scale decentralised membrane bioreactor for urban reuse

Bart Verrecht; Thomas Maere; Lorenzo Benedetti; Ingmar Nopens; Simon J. Judd

The energy consumption of a small-scale membrane bioreactor, treating high strength domestic wastewater for community level wastewater recycling, has been optimised using a dynamic model of the plant. ASM2d was chosen as biological process model to account for the presence of phosphate accumulating organisms. A tracer test was carried out to determine the hydraulic behaviour of the plant. To realistically simulate the aeration demand, a dedicated aeration model was used incorporating the dependency of the oxygen transfer on the mixed liquor concentration and allowing differentiation between coarse and fine bubble aeration, both typically present in MBRs. A steady state and dynamic calibration was performed, and the calibrated model was able to predict effluent nutrient concentrations and MLSS concentrations accurately. A scenario analysis (SCA) was carried out using the calibrated model to simulate the effect of varying SRT, recirculation ratio and DO set point on effluent quality, MLSS concentrations and aeration demand. Linking the model output with empirically derived correlations for energy consumption allowed an accurate prediction of the energy consumption. The SCA results showed that decreasing membrane aeration and SRT were most beneficial towards total energy consumption, while increasing the recirculation flow led to improved TN removal but at the same time also deterioration in TP removal. A validation of the model was performed by effectively applying better operational parameters to the plant. This resulted in a reduction in energy consumption by 23% without compromising effluent quality, as was accurately predicted by the model. This modelling approach thus allows the operating envelope to be reliably identified for meeting criteria based on energy demand and specific water quality determinants.


Water Research | 2014

Salt stress in a membrane bioreactor: dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing

L. De Temmerman; Thomas Maere; Hardy Temmink; A. Zwijnenburg; Ingmar Nopens

Membrane bioreactors are a well-established technology for wastewater treatment. However, their efficiency is adversely impacted by membrane fouling, primarily inciting very conservative operations of installations that makes them less appealing from an economic perspective. This fouling propensity of the activated sludge is closely related to system disturbances. Therefore, improved insight into the impact of fouling is crucial towards increased membrane performance. In this work, the disturbance of a salt shock was investigated with respect to sludge composition and filterability in two parallel lab-scale membrane bioreactors. Several key sludge parameters (soluble microbial products, sludge-bound extracellular polymeric substances, supramicron particle size distributions (PSD), submicron particle concentrations) were intensively monitored prior to, during, and after a disturbance to investigate its impact as well as the potential governing mechanism. Upon salt addition, the supramicron PSD immediately shifted to smaller floc sizes, and the total fouling rate increased. Following a certain delay, an increase in submicron particles, supernatant proteins, and polysaccharides was observed as well as an increase in the irreversible membrane fouling rate. Recovery from the disturbance was evidenced with a simultaneous decrease in the above mentioned quantities. A similar experiment introducing powdered activated carbon (PAC) addition used for remediation resulted in either no or less significant changes in the above mentioned quantities, signifying its potential as a mitigation strategy.


Water Research | 2012

Membrane bioreactor fouling behaviour assessment through principal component analysis and fuzzy clustering

Thomas Maere; Kris Villez; Stefano Marsili-Libelli; Wouter Naessens; Ingmar Nopens

Adequate membrane bioreactor operation requires frequent evaluation of the membrane state. A data-driven approach based on principal component analysis (PCA) and fuzzy clustering extracting the necessary monitoring information solely out of transmembrane pressure data was investigated for this purpose. Out of three tested PCA techniques the two functional methods proved useful to cope with noise and outliers as opposed to the common standard PCA, while all of them presented similar capabilities for revealing data trends and patterns. The expert functional PCA approach enabled linking the two major trends in the data to reversible fouling and irreversible fouling. The B-splines approach provided a more objective way for functional representation of the data set but its complexity did not appear justified by better results. The fuzzy clustering algorithm, applied after PCA, was successful in recognizing the data trends and placing the cluster centres in meaningful positions, as such supporting data analysis. However, the algorithm did not allow a correct classification of all data. Factor analysis was used instead, exploiting the linearity of the observed two dimensional trends, to completely split the reversible and irreversible fouling effects and classify the data in a more pragmatic approach. Overall, the tested techniques appeared useful and can serve as the basis for automatic membrane fouling monitoring and control.


Water Science and Technology | 2015

Impact on sludge inventory and control strategies using the benchmark simulation model no. 1 with the Bürger-Diehl settler model

Elena Torfs; Thomas Maere; Raimund Bürger; Stefan Diehl; Ingmar Nopens

An improved one-dimensional (1-D) model for the secondary clarifier, i.e. the Bürger-Diehl model, was recently presented. The decisive difference to traditional layer models is that every detail of the implementation is in accordance with the theory of partial differential equations. The Bürger-Diehl model allows accounting for hindered and compressive settling as well as inlet dispersion. In this contribution, the impact of specific features of the Bürger-Diehl model on settler underflow concentration predictions, plant sludge inventory and mixed liquor suspended solids based control actions are investigated by using the benchmark simulation model no. 1. The numerical results show that the Bürger-Diehl model allows for more realistic predictions of the underflow sludge concentration, which is essential for more accurate wet weather modelling and sludge waste predictions. The choice of secondary settler model clearly has a profound impact on the operation and control of the entire treatment plant and it is recommended to use the Bürger-Diehl model as of now in any wastewater treatment plant modelling effort.


Arctic, Antarctic, and Alpine Research | 2009

Determination of Leaf Area Index, Total Foliar N, and Normalized Difference Vegetation Index for Arctic Ecosystems Dominated by Cassiope tetragona

Matteo Campioli; Lorna E. Street; Anders Michelsen; Gaius R. Shaver; Thomas Maere; Roeland Samson; Raoul Lemeur

Abstract Leaf area index (LAI) and total foliar nitrogen (TFN) are important canopy characteristics and crucial variables needed to simulate photosynthesis and ecosystem CO2 fluxes. Although plant communities dominated by Cassiope tetragona are widespread in the Arctic, LAI and TFN for this vegetation type have not been accurately quantified. We address this knowledge gap by (i) direct measurements of LAI and TFN for C. tetragona, and (ii) determining TFN-LAI and LAI–normalized difference vegetation index (NDVI) relationships for typical C. tetragona tundras in the subarctic (Sweden) and High Arctic (Greenland and Svalbard). Leaves of C. tetragona are 2–6 mm long and closely appressed to their stems forming parallelepiped shoots. We determined the LAI of C. tetragona by measuring the area of the leaves while still attached to the stem, then doubling the resulting one-sided area. TFN was determined from leaf N and biomass. The LAI-NDVI and TFN-LAI relationships showed high correlation and can be used to estimate indirectly LAI and TFN. The LAI-NDVI relationship for C. tetragona vegetation differed from a generic LAI-NDVI relationship for arctic tundra, whereas the TFN-LAI relationship did not. Overall, the LAI of C. tetragona tundra ranged from 0.4 to 1.1 m2 m−2 and TFN from 1.4 to 1.7 g N m−2.


Water Research | 2013

CFD study to determine the optimal configuration of aerators in a full-scale waste stabilization pond

Andres Alvarado; Mehul Vesvikar; Juan F. Cisneros; Thomas Maere; Peter Goethals; Ingmar Nopens

Aerated lagoons (ALs) are important variants of the pond wastewater treatment technology that have not received much attention in the literature. The hydraulic behaviour of ALs and especially the Facultative aerated lagoons (FALs) is very complex since the aeration in these systems is designed for oxygen transfer but not necessarily to create complete mixing. In this work, the energy expenditure of the aerators was studied by means of a scenario analysis. 3D CFD models (one phase and multiphase) of a 3 ha FAL in a waste stabilization pond system in Cuenca (Ecuador) were built for different configurations of aerators. The thrust produced by the aerators was modelled by an external momentum source applied as velocity vectors into the pond fluid. The predictions of a single phase model were in satisfactory agreement with experimental results. Subsequently, a scenario analysis assessing several aeration schemes with different numbers of aerators in operation were tested with respect to velocity profiles and residence time distribution (RTD) curves. This analysis showed that the aeration scheme with all 10 aerators switched on produces a similar hydraulic behaviour compared to using only 6 or 8 aerators. The current operational schemes comprise of switching off some aerators during the peak hours of the day and operating all 10 aerators during night. This current practice could be economically replaced by continuously operating 4 or 6 aerators without significantly affecting the overall mixing. Furthermore, a continuous mixing regime minimises the sediment oxygen demand enhancing the oxygen levels in the pond.


Water Science and Technology | 2017

How well-mixed is well mixed? Hydrodynamic – biokinetic model integration in an aerated tank of a full scale water resource recovery facility

Wim Audenaert; Youri Amerlinck; Thomas Maere; Marina Arnaldos; Ingmar Nopens

Current water resource recovery facility (WRRF) models only consider local concentration variations caused by inadequate mixing to a very limited extent, which often leads to a need for (rigorous) calibration. The main objective of this study is to visualize local impacts of mixing by developing an integrated hydrodynamic-biokinetic model for an aeration compartment of a full-scale WRRF. Such a model is able to predict local variations in concentrations and thus allows judging their importance at a process level. In order to achieve this, full-scale hydrodynamics have been simulated using computational fluid dynamics (CFD) through a detailed description of the gas and liquid phases and validated experimentally. In a second step, full ASM1 biokinetic model was integrated with the CFD model to account for the impact of mixing at the process level. The integrated model was subsequently used to evaluate effects of changing influent and aeration flows on process performance. Regions of poor mixing resulting in non-uniform substrate distributions were observed even in areas commonly assumed to be well-mixed. The concept of concentration distribution plots was introduced to quantify and clearly present spatial variations in local process concentrations. Moreover, the results of the CFD-biokinetic model were concisely compared with a conventional tanks-in-series (TIS) approach. It was found that TIS model needs calibration and a single parameter set does not suffice to describe the system under both dry and wet weather conditions. Finally, it was concluded that local mixing conditions have significant consequences in terms of optimal sensor location, control system design and process evaluation.

Collaboration


Dive into the Thomas Maere's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge