Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youri Amerlinck is active.

Publication


Featured researches published by Youri Amerlinck.


Water Science and Technology | 2009

Wastewater treatment modelling: dealing with uncertainties

Evangelia Belia; Youri Amerlinck; Lorenzo Benedetti; Bruce R. Johnson; Gürkan Sin; Peter Vanrolleghem; Krist V. Gernaey; Sylvie Gillot; Marc B. Neumann; L. Rieger; Andrew Shaw; Kris Villez

This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model prediction accuracy and uncertainty issues. It also aims to identify future research needs. Ultimately the goal of such a discussion would be to generate transparent and objective methods of explicitly evaluating the reliability of model results, before they are implemented in an engineering decision-making context.


Science of The Total Environment | 2014

Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs.

Xavier Flores-Alsina; Magnus Arnell; Youri Amerlinck; Lluís Corominas; Krist V. Gernaey; Lisha Guo; Erik Lindblom; Ingmar Nopens; Jose Porro; Andrew Shaw; Laura Snip; Peter Vanrolleghem; Ulf Jeppsson

The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO₂, CH₄ and N₂O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO₂ emissions may decrease, the effect is counterbalanced by increased N₂O emissions, especially since N₂O has a 300-fold stronger greenhouse effect than CO₂. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making.


Urban Water Journal | 2013

Impact-based integrated real-time control for improvement of the Dommel River water quality

Jeroen Langeveld; Lorenzo Benedetti; J.J.M. de Klein; Ingmar Nopens; Youri Amerlinck; A.F. van Nieuwenhuijzen; Tony Flameling; O. van Zanten; Stefan Weijers

The KALLISTO project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the river Dommel. Within the project, both acute and long term impacts of the urban wastewater system on the chemical and ecological quality of the river are studied with an integral monitoring campaign in the urban wastewater system (WWTP and sewers) and in the river. Based on this monitoring campaign, detailed models were calibrated. These models are partly simplified and integrated in a single model, which is validated using the detailed submodels. The integrated model was used to study the potential for impact-based real-time control (RTC). Impact based RTC proved to be able to improve the quality of the receiving waters significantly, although additional measures remain necessary to be able to meet the WFD requirements.


Water Science and Technology | 2015

Modelling and characterization of primary settlers in view of whole plant and resource recovery modelling

Giulia Bachis; Thibaud Maruéjouls; Sovanna Tik; Youri Amerlinck; Henryk Melcer; Ingmar Nopens; Paul Lessard; Peter Vanrolleghem

Characterization and modelling of primary settlers have been neglected pretty much to date. However, whole plant and resource recovery modelling requires primary settler model development, as current models lack detail in describing the dynamics and the diversity of the removal process for different particulate fractions. This paper focuses on the improved modelling and experimental characterization of primary settlers. First, a new modelling concept based on particle settling velocity distribution is proposed which is then applied for the development of an improved primary settler model as well as for its characterization under addition of chemicals (chemically enhanced primary treatment, CEPT). This model is compared to two existing simple primary settler models (Otterpohl and Freund; Lessard and Beck), showing to be better than the first one and statistically comparable to the second one, but with easier calibration thanks to the ease with which wastewater characteristics can be translated into model parameters. Second, the changes in the activated sludge model (ASM)-based chemical oxygen demand fractionation between inlet and outlet induced by primary settling is investigated, showing that typical wastewater fractions are modified by primary treatment. As they clearly impact the downstream processes, both model improvements demonstrate the need for more detailed primary settler models in view of whole plant modelling.


Water Science and Technology | 2017

Towards advanced aeration modelling: from blower to bubbles to bulk

Andreia Neves do Amaral; Oliver Schraa; Leiv Rieger; Sylvie Gillot; Yannick Fayolle; Giacomo Bellandi; Youri Amerlinck; Séverine Mortier; Riccardo Gori; Ramiro Neves; Ingmar Nopens

Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.


Water Science and Technology | 2014

Development and assessment of an integrated ecological modelling framework to assess the effect of investments in wastewater treatment on water quality

Javier E. Holguin-Gonzalez; Pieter Boets; Gert Everaert; Ine Pauwels; Koen Lock; Sacha Gobeyn; Lorenzo Benedetti; Youri Amerlinck; Ingmar Nopens; Peter Goethals

Worldwide, large investments in wastewater treatment are made to improve water quality. However, the impacts of these investments on river water quality are often not quantified. To assess water quality, the European Water Framework Directive (WFD) requires an integrated approach. The aim of this study was to develop an integrated ecological modelling framework for the River Drava (Croatia) that includes physical-chemical and hydromorphological characteristics as well as the ecological river water quality status. The developed submodels and the integrated model showed accurate predictions when comparing the modelled results to the observations. Dissolved oxygen and nitrogen concentrations (ammonium and organic nitrogen) were the most important variables in determining the ecological water quality (EWQ). The result of three potential investment scenarios of the wastewater treatment infrastructure in the city of Varaždin on the EWQ of the River Drava was assessed. From this scenario-based analysis, it was concluded that upgrading the existing wastewater treatment plant with nitrogen and phosphorus removal will be insufficient to reach a good EWQ. Therefore, other point and diffuse pollution sources in the area should also be monitored and remediated to meet the European WFD standards.


Water Science and Technology | 2013

On data requirements for calibration of integrated models for urban water systems

Jeroen Langeveld; Ingmar Nopens; Rémy Schilperoort; Lorenzo Benedetti; Jeroen J. M. de Klein; Youri Amerlinck; Stefan Weijers

Modeling of integrated urban water systems (IUWS) has seen a rapid development in recent years. Models and software are available that describe the process dynamics in sewers, wastewater treatment plants (WWTPs), receiving water systems as well as at the interfaces between the submodels. Successful applications of integrated modeling are, however, relatively scarce. One of the reasons for this is the lack of high-quality monitoring data with the required spatial and temporal resolution and accuracy to calibrate and validate the integrated models, even though the state of the art of monitoring itself is no longer the limiting factor. This paper discusses the efforts to be able to meet the data requirements associated with integrated modeling and describes the methods applied to validate the monitoring data and to use submodels as software sensor to provide the necessary input for other submodels. The main conclusion of the paper is that state of the art monitoring is in principle sufficient to provide the data necessary to calibrate integrated models, but practical limitations resulting in incomplete data-sets hamper widespread application. In order to overcome these difficulties, redundancy of future monitoring networks should be increased and, at the same time, data handling (including data validation, mining and assimilation) should receive much more attention.


Water Science and Technology | 2017

How well-mixed is well mixed? Hydrodynamic – biokinetic model integration in an aerated tank of a full scale water resource recovery facility

Wim Audenaert; Youri Amerlinck; Thomas Maere; Marina Arnaldos; Ingmar Nopens

Current water resource recovery facility (WRRF) models only consider local concentration variations caused by inadequate mixing to a very limited extent, which often leads to a need for (rigorous) calibration. The main objective of this study is to visualize local impacts of mixing by developing an integrated hydrodynamic-biokinetic model for an aeration compartment of a full-scale WRRF. Such a model is able to predict local variations in concentrations and thus allows judging their importance at a process level. In order to achieve this, full-scale hydrodynamics have been simulated using computational fluid dynamics (CFD) through a detailed description of the gas and liquid phases and validated experimentally. In a second step, full ASM1 biokinetic model was integrated with the CFD model to account for the impact of mixing at the process level. The integrated model was subsequently used to evaluate effects of changing influent and aeration flows on process performance. Regions of poor mixing resulting in non-uniform substrate distributions were observed even in areas commonly assumed to be well-mixed. The concept of concentration distribution plots was introduced to quantify and clearly present spatial variations in local process concentrations. Moreover, the results of the CFD-biokinetic model were concisely compared with a conventional tanks-in-series (TIS) approach. It was found that TIS model needs calibration and a single parameter set does not suffice to describe the system under both dry and wet weather conditions. Finally, it was concluded that local mixing conditions have significant consequences in terms of optimal sensor location, control system design and process evaluation.


Water Science and Technology | 2016

Detailed off-gas measurements for improved modelling of the aeration performance at the WWTP of Eindhoven.

Youri Amerlinck; Giacomo Bellandi; Andreia Neves do Amaral; Stefan Weijers; Ingmar Nopens

At wastewater treatment plants (WWTPs), the aerobic conversion processes in the bioreactor are driven by the presence of dissolved oxygen (DO). Within these conversion processes, the oxygen transfer is a rate limiting step as well as being the largest energy consumer. Despite this high importance, WWTP models often lack detail on the aeration part. An extensive measurement campaign with off-gas tests was performed at the WWTP of Eindhoven to provide more information on the performance and behaviour of the aeration system. A high spatial and temporal variability in the oxygen transfer efficiency was observed. Applying this gathered system knowledge in the aeration model resulted in an improved prediction of the DO concentrations. Moreover, an important consequence of this was that ammonium predictions could be improved by resetting the ammonium half-saturation index for autotrophs to its default value. This again proves the importance of balancing sub-models with respect to the need for model calibration as well as model predictive power.


Water Research | 2017

Towards improved accuracy in modeling aeration efficiency through understanding bubble size distribution dynamics

Andreia Neves do Amaral; Giacomo Bellandi; Ramiro Neves; Youri Amerlinck; Ingmar Nopens

Aeration is the largest energy consumer in most water and resource recovery facilities, which is why oxygen transfer optimization is fundamental to improve energy efficiency. Although oxygen transfer is strongly influenced by the bubble size distribution dynamics, most aeration efficiency models currently do not include this influence explicitly. In few cases, they assume a single average bubble size. The motivation of this work is to investigate this knowledge gap, i.e. a more accurate calculation of the impact of bubble size distribution dynamics on oxygen transfer. Experiments were performed to study bubble size distribution dynamics along the height of a bubble column at different air flow rates for both tap water and solutions that mimic the viscosity of activated sludge at different sludge concentrations. Results show that bubble size is highly dynamic in space and time since it is affected by hydrodrynamics and the viscosity of the liquid. Consequently, oxygen transfer also has a dynamic character. The concept of a constant overall volumetric oxygen transfer coefficient, KLa, can thus be improved. A new modeling approach to determine the KLa locally based on bubble size distribution dynamics is introduced as an alternative. This way, the KLa for the entire column is calculated and compared to the one measured by a traditional method. Results are in good agreement for tap water. The modeled KLa based on the new approach slightly overestimates the experimental KLa for solutions that mimic the viscosity of activated sludge. The difference appears to be lower when the air flow rate increases. This work can be considered as a first step towards more accurate and rigorous mechanistic aeration efficiency models which are based on in-depth mechanism knowledge. This is key for oxygen transfer optimization and consequently energy savings.

Collaboration


Dive into the Youri Amerlinck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Weijers

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen Langeveld

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krist V. Gernaey

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge