Thomas P. Roland
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas P. Roland.
Journal of Ecology | 2014
Alistair W. R. Seddon; Anson W. Mackay; Ambroise G. Baker; H. John B. Birks; Elinor Breman; Caitlin E. Buck; Erle C. Ellis; Cynthia A. Froyd; Jacquelyn L. Gill; Lindsey Gillson; E. A. Johnson; Vivienne J. Jones; Stephen Juggins; Marc Macias-Fauria; Keely Mills; Jesse L. Morris; David Nogués-Bravo; Surangi W. Punyasena; Thomas P. Roland; Andrew J. Tanentzap; Katherine J. Willis; Eline N. van Asperen; William E. N. Austin; Rick Battarbee; Shonil A. Bhagwat; Christina L. Belanger; Keith Bennett; Hilary H. Birks; Christopher Bronk Ramsey; Stephen J. Brooks
Summary 1. Priority question exercises are becoming an increasingly common tool to frame future agendas in conservation and ecological science. They are an effective way to identify research foci that advance the field and that also have high policy and conservation relevance. 2. To date there has been no coherent synthesis of key questions and priority research areas for palaeoecology, which combines biological, geochemical and molecular techniques in order to reconstruct past ecological and environmental systems on timescales from decades to millions of years. 3. We adapted a well-established methodology to identify 50 priority research questions in palaeoecology. Using a set of criteria designed to identify realistic and achievable research goals, we selected questions from a pool submitted by the international palaeoecology research community and relevant policy practitioners. This article is protected by copyright. All rights reserved. Accepted Article 4. The integration of online participation, both before and during the workshop, increased international engagement in question selection. 5. The questions selected are structured around six themes: human–environment interactions in the Anthropocene; biodiversity, conservation, and novel ecosystems; biodiversity over long timescales; ecosystem processes and biogeochemical cycling; comparing, combining and synthesizing information from multiple records; and new developments in palaeoecology. 6. Future opportunities in palaeoecology are related to improved incorporation of uncertainty into reconstructions, an enhanced understanding of ecological and evolutionary dynamics and processes, and the continued application of long-term data for better-informed landscape management. 7. Synthesis Palaeoecology is a vibrant and thriving discipline and these 50 priority questions highlight its potential for addressing both pure (e.g. ecological and evolutionary, methodological) and applied (e.g. environmental and conservation) issues related to ecological science and global change.
Scientific Reports | 2016
Graeme T. Swindles; Paul J. Morris; Donal Mullan; Elizabeth J. Watson; T. Edward Turner; Thomas P. Roland; Matthew J. Amesbury; Ulla Kokfelt; Kristian Schoning; Steve Pratte; Angela V. Gallego-Sala; Dan J. Charman; Nicole K. Sanderson; Michelle Garneau; Jonathan L. Carrivick; Clare Woulds; Joseph Holden; Lauren Parry; Jennifer M. Galloway
Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.
PLOS ONE | 2014
François De Vleeschouwer; Heleen Vanneste; Dmitri Mauquoy; Natalia Piotrowska; Fernando Torrejón; Thomas P. Roland; Ariel F. Stein; Gaël Le Roux
Metallurgical activities have been undertaken in northern South America (NSA) for millennia. However, it is still unknown how far atmospheric emissions from these activities have been transported. Since the timing of metallurgical activities is currently estimated from scarce archaeological discoveries, the availability of reliable and continuous records to refine the timing of past metal deposition in South America is essential, as it provides an alternative to discontinuous archives, as well as evidence for global trace metal transport. We show in a peat record from Tierra del Fuego that anthropogenic metals likely have been emitted into the atmosphere and transported from NSA to southern South America (SSA) over the last 4200 yrs. These findings are supported by modern time back-trajectories from NSA to SSA. We further show that apparent anthropogenic Cu and Sb emissions predate any archaeological evidence for metallurgical activities. Lead and Sn were also emitted into the atmosphere as by-products of Inca and Spanish metallurgy, whereas local coal-gold rushes and the industrial revolution contributed to local contamination. We suggest that the onset of pre-Hispanic metallurgical activities is earlier than previously reported from archaeological records and that atmospheric emissions of metals were transported from NSA to SSA.
Analytical Chemistry | 2015
Neil J. Loader; F.A. Street-Perrott; T.J. Daley; P.D.M. Hughes; Adam Kimak; Tom Levanič; Gunnar Mallon; Dmitri Mauquoy; Iain Robertson; Thomas P. Roland; S. van Bellen; Malin Michelle Ziehmer; Markus Leuenberger
A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.
Current Biology | 2017
Matthew J. Amesbury; Thomas P. Roland; Jessica Royles; Dominic A. Hodgson; Peter Convey; Howard Griffiths; Dan J. Charman
Recent climate change on the Antarctic Peninsula is well documented [1-5], with warming, alongside increases in precipitation, wind strength, and melt season length [1, 6, 7], driving environmental change [8, 9]. However, meteorological records mostly began in the 1950s, and paleoenvironmental datasets that provide a longer-term context to recent climate change are limited in number and often from single sites [7] and/or discontinuous in time [10, 11]. Here we use moss bank cores from a 600-km transect from Green Island (65.3°S) to Elephant Island (61.1°S) as paleoclimate archives sensitive to regional temperature change, moderated by water availability and surface microclimate [12, 13]. Mosses grow slowly, but cold temperatures minimize decomposition, facilitating multi-proxy analysis of preserved peat [14]. Carbon isotope discrimination (Δ13C) in cellulose indicates the favorability of conditions for photosynthesis [15]. Testate amoebae are representative heterotrophs in peatlands [16-18], so their populations are an indicator of microbial productivity [14]. Moss growth and mass accumulation rates represent the balance between growth and decomposition [19]. Analyzing these proxies in five cores at three sites over 150 years reveals increased biological activity over the past ca. 50 years, in response to climate change. We identified significant changepoints in all sites and proxies, suggesting fundamental and widespread changes in the terrestrial biosphere. The regional sensitivity of moss growth to past temperature rises suggests that terrestrial ecosystems will alter rapidly under future warming, leading to major changes in the biology and landscape of this iconic region-an Antarctic greening to parallel well-established observations in the Arctic [20].
Oecologia | 2016
Jessica Royles; Matthew J. Amesbury; Thomas P. Roland; Glyn D. Jones; Peter Convey; Howard Griffiths; Dominic A. Hodgson; Dan J. Charman
The stable isotope compositions of moss tissue water (δ2H and δ18O) and cellulose (δ13C and δ18O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ18O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ13C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.
The Holocene | 2016
Simon van Bellen; Dmitri Mauquoy; P.D.M. Hughes; Thomas P. Roland; T.J. Daley; Neil J. Loader; F. Alayne Street-Perrott; Emma M. Rice; Verónica A. Pancotto; Richard J. Payne
The ombrotrophic peat bogs of Tierra del Fuego are located within the southern westerly wind belt (SWWB), which dominates climate variability in this region. We have reconstructed late-Holocene water-table depths from three peat bogs and aimed to relate these records to shifts in regional climate. Water-table depths were quantified by the analysis of testate amoeba assemblages, and a regional transfer function was used to infer past water-table depths. During the last 2000 years, testate amoeba assemblages have been relatively stable, with a dominance of Difflugia pulex and Difflugia pristis type, and an increase in Assulina muscorum and other Euglyphida at the top of each section. Multivariate analyses show that water-table depth remained the main environmental variable explaining assemblages along the TiA12 core, but reconstructions were not significant for the two other cores. In line with the low variability in assemblages, water tables were relatively stable during the last 2000 years. Slightly wetter conditions were found between ~1400 and 900 cal. BP and a pronounced recent dry shift was reconstructed in all of the three peat profiles. Considering the regional climatic context, this recent shift may have been forced by a decrease in precipitation and warmer conditions linked to an increase in the importance of the SWWB. Nevertheless, we cannot exclude the influence of higher UV-B radiation resulting from the local degradation of the ozone layer since the late 1970s, which may have had an additional effect on the relative presence of A. muscorum in the southern Patagonian region.
Protist | 2017
Thomas P. Roland; Matthew J. Amesbury; David M. Wilkinson; Dan J. Charman; Peter Convey; Dominic A. Hodgson; Jessica Royles; Steffen Clauß; Eckhard Völcker
Precise and sufficiently detailed morphological taxonomy is vital in biology, for example in the accurate interpretation of ecological and palaeoecological datasets, especially in polar regions, where biodiversity is poor. Testate amoebae on the Antarctic Peninsula (AP) are well-documented and variations in their population size have recently been interpreted as a proxy for microbial productivity changes in response to recent regional climate change. AP testate amoeba assemblages are dominated by a small number of globally ubiquitous taxa. We examine morphological variation in Corythion spp. across the AP, finding clear evidence supporting the presence of two morphospecies. Corythion constricta (Certes 1889) was identified on the AP for the first time and has potentially been previously misidentified. Furthermore, a southerly trend of decreasing average test size in Corythion dubium (Taránek 1881) along the AP suggests adaptive polymorphism, although the precise drivers of this remain unclear, with analysis hindered by limited environmental data. Further work into morphological variation in Corythion is needed elsewhere, alongside molecular analyses, to evaluate the potential for (pseudo)cryptic diversity within the genus. We advocate a parsimonious taxonomical approach that recognises genetic diversity but also examines and develops accurate morphological divisions and descriptions suitable for light microscopy-based ecological and palaeoecological studies.
Nature Climate Change | 2018
Angela V. Gallego-Sala; Dan J. Charman; Simon Brewer; Susan E. Page; I. Colin Prentice; Pierre Friedlingstein; Steve Moreton; Matthew J. Amesbury; David W. Beilman; Svante Björck; Tatiana Blyakharchuk; Christopher Bochicchio; Robert K. Booth; Joan Bunbury; Philip Camill; Donna Carless; Rodney A. Chimner; Michael Clifford; Elizabeth Cressey; Colin Courtney-Mustaphi; François De Vleeschouwer; Rixt de Jong; Barbara Fiałkiewicz-Kozieł; Sarah A. Finkelstein; Michelle Garneau; Esther N. Githumbi; John Hribjlan; James R. Holmquist; P.D.M. Hughes; Chris D. Jones
The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around ad 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.Analysis of peatland carbon accumulation over the last millennium and its association with global-scale climate space indicates an ongoing carbon sink into the future, but with decreasing strength as conditions warm.
Carbon Management | 2014
P.D.M. Hughes; Thomas P. Roland
“Only by examining the recent palaeoecological record does the effect of increased dust loading on the delicate nutrient balance of this ecosystem, and consequently, its ability to sequestrate carbon, become clear.”