Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Prod'homme is active.

Publication


Featured researches published by Thomas Prod'homme.


Nature Medicine | 2007

Type II monocytes modulate T cell–mediated central nervous system autoimmune disease

Martin S. Weber; Thomas Prod'homme; Sawsan Youssef; Shannon Dunn; Cynthia D Rundle; Linda Lee; Juan C. Patarroyo; Olaf Stüve; Raymond A. Sobel; Lawrence Steinman; Scott S. Zamvil

Treatment with glatiramer acetate (GA, copolymer-1, Copaxone), a drug approved for multiple sclerosis (MS), in a mouse model promoted development of anti-inflammatory type II monocytes, characterized by increased secretion of interleukin (IL)-10 and transforming growth factor (TGF)-β, and decreased production of IL-12 and tumor necrosis factor (TNF). This anti-inflammatory cytokine shift was associated with reduced STAT-1 signaling. Type II monocytes directed differentiation of TH2 cells and CD4+CD25+FoxP3+ regulatory T cells (Treg) independent of antigen specificity. Type II monocyte–induced regulatory T cells specific for a foreign antigen ameliorated experimental autoimmune encephalomyelitis (EAE), indicating that neither GA specificity nor recognition of self-antigen was required for their therapeutic effect. Adoptive transfer of type II monocytes reversed EAE, suppressed TH17 cell development and promoted both TH2 differentiation and expansion of Treg cells in recipient mice. This demonstration of adoptive immunotherapy by type II monocytes identifies a central role for these cells in T cell immune modulation of autoimmunity.


Journal of Experimental Medicine | 2006

Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin

Shannon E. Dunn; Sawsan Youssef; Matthew J. Goldstein; Thomas Prod'homme; Martin S. Weber; Scott S. Zamvil; Lawrence Steinman

3-hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase is a critical enzyme in the mevalonate pathway that regulates the biosynthesis of cholesterol as well as isoprenoids that mediate the membrane association of certain GTPases. Blockade of this enzyme by atorvastatin (AT) inhibits the destructive proinflammatory T helper cell (Th)1 response during experimental autoimmune encephalomyelitis and may be beneficial in the treatment of multiple sclerosis and other Th1-mediated autoimmune diseases. Here we present evidence linking specific isoprenoid intermediates of the mevalonate pathway to signaling pathways that regulate T cell autoimmunity. We demonstrate that the isoprenoid geranylgeranyl-pyrophosphate (GGPP) mediates proliferation, whereas both GGPP and its precursor, farnesyl-PP, regulate the Th1 differentiation of myelin-reactive T cells. Depletion of these isoprenoid intermediates in vivo via oral AT administration hindered these T cell responses by decreasing geranylgeranylated RhoA and farnesylated Ras at the plasma membrane. This was associated with reduced extracellular signal–regulated kinase (ERK) and p38 phosphorylation and DNA binding of their cotarget c-fos in response to T cell receptor activation. Inhibition of ERK and p38 mimicked the effects of AT and induced a Th2 cytokine shift. Thus, by connecting isoprenoid availability to regulation of Th1/Th2 fate, we have elucidated a mechanism by which AT may suppress Th1-mediated central nervous system autoimmune disease.


Annals of Neurology | 2010

B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity

Martin S. Weber; Thomas Prod'homme; Juan C. Patarroyo; Nicolas Molnarfi; Tara Karnezis; Klaus Lehmann-Horn; Dimitry M. Danilenko; Jeffrey Eastham-Anderson; Anthony J. Slavin; Christopher Linington; Claude C.A. Bernard; Flavius Martin; Scott S. Zamvil

Clinical studies indicate that anti‐CD20 B‐cell depletion may be an effective multiple sclerosis (MS) therapy. We investigated mechanisms of anti‐CD20‐mediated immune modulation using 2 paradigms of experimental autoimmune encephalomyelitis (EAE).


Journal of Experimental Medicine | 2013

MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies

Nicolas Molnarfi; Ulf Schulze-Topphoff; Martin S. Weber; Juan C. Patarroyo; Thomas Prod'homme; Michel Varrin-Doyer; Aparna Shetty; Christopher Linington; Anthony J. Slavin; Juan Hidalgo; Dieter E. Jenne; Hartmut Wekerle; Raymond A. Sobel; Claude C.A. Bernard; Mark J. Shlomchik; Scott S. Zamvil

Antigen presentation, but not antibody secretion, by B cells drives CNS autoimmunity induced by immunization with human MOG.


Nature Immunology | 2015

The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis

Michio Onizawa; Shigeru Oshima; Ulf Schulze-Topphoff; Juan A. Oses-Prieto; Timothy T. Lu; Rita M. Tavares; Thomas Prod'homme; Bao Duong; Michael I. Whang; Rommel Advincula; Alex Agelidis; Julio Barrera; Hao Wu; Alma L. Burlingame; Barbara A. Malynn; Scott S. Zamvil; Averil Ma

A20 is an anti-inflammatory protein linked to multiple human diseases; however, the mechanisms by which A20 prevents inflammatory disease are incompletely defined. We found that A20-deficient T cells and fibroblasts were susceptible to caspase-independent and kinase RIPK3–dependent necroptosis. Global deficiency in RIPK3 significantly restored the survival of A20-deficient mice. A20-deficient cells exhibited exaggerated formation of RIPK1-RIPK3 complexes. RIPK3 underwent physiological ubiquitination at Lys5 (K5), and this ubiquitination event supported the formation of RIPK1-RIPK3 complexes. Both the ubiquitination of RIPK3 and formation of the RIPK1-RIPK3 complex required the catalytic cysteine of A20s deubiquitinating motif. Our studies link A20 and the ubiquitination of RIPK3 to necroptotic cell death and suggest additional mechanisms by which A20 might prevent inflammatory disease.


Nature Communications | 2015

Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation

Jae Kyu Ryu; Mark A. Petersen; Sara G. Murray; Kim M. Baeten; Anke Meyer-Franke; Justin P. Chan; Eirini Vagena; Catherine Bedard; Michael R. Machado; Pamela E. Rios Coronado; Thomas Prod'homme; Israel F. Charo; Hans Lassmann; Jay L. Degen; Scott S. Zamvil; Katerina Akassoglou

Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood–brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b+ antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity.


PLOS ONE | 2010

Immunodominant T Cell Determinants of Aquaporin-4, the Autoantigen Associated with Neuromyelitis Optica

Patricia A. Nelson; Mojgan Khodadoust; Thomas Prod'homme; Collin M. Spencer; Juan C. Patarroyo; Michel Varrin-Doyer; Joseph D. Ho; Robert M. Stroud; Scott S. Zamvil

Autoantibodies that target the water channel aquaporin-4 (AQP4) in neuromyelitis optica (NMO) are IgG1, a T cell-dependent Ig subclass. However, a role for AQP4-specific T cells in this CNS inflammatory disease is not known. To evaluate their potential role in CNS autoimmunity, we have identified and characterized T cells that respond to AQP4 in C57BL/6 and SJL/J mice, two strains that are commonly studied in models of CNS inflammatory diseases. Mice were immunized with either overlapping peptides or intact hAQP4 protein encompassing the entire 323 amino acid sequence. T cell determinants identified from examination of the AQP4 peptide (p) library were located within AQP4 p21-40, p91-110, p101-120, p166-180, p231-250 and p261-280 in C57BL/6 mice, and within p11-30, p21-40, p101-120, p126-140 and p261-280 in SJL/J mice. AQP4-specific T cells were CD4+ and MHC II-restricted. In recall responses to immunization with intact AQP4, T cells responded primarily to p21-40, indicating this region contains the immunodominant T cell epitope(s) for both strains. AQP4 p21-40-primed T cells secreted both IFN-γ and IL-17. The core immunodominant AQP4 21-40 T cell determinant was mapped to residues 24-35 in C57BL/6 mice and 23-35 in SJL/J mice. Our identification of the AQP4 T cell determinants and characterization of its immunodominant determinant should permit investigators to evaluate the role of AQP4-specific T cells in vivo and to develop AQP4-targeted murine NMO models.


Nature Reviews Neurology | 2005

Drug Insight: using statins to treat neuroinflammatory disease.

Martin S. Weber; Thomas Prod'homme; Lawrence Steinman; Scott S. Zamvil

Statins, a family of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are used primarily to reduce atherogenesis and cardiovascular morbidity. Surprisingly, they have also been shown to have immunomodulatory properties that might be of benefit for the treatment of autoimmune disorders. Statins can prevent and even reverse ongoing paralysis in experimental autoimmune encephalomyelitis—the mouse model for multiple sclerosis—and on the basis of these findings, statins are now being tested in patients with multiple sclerosis in clinical trials.


Expert Opinion on Therapeutic Targets | 2003

Statins and their potential targets in multiple sclerosis therapy.

Olaf Stüve; Thomas Prod'homme; Anthony J. Slavin; Sawsan Youssef; Shannon Dunn; Lawrence Steinman; Scott S. Zamvil

Multiple sclerosis (MS) is a CNS-demyelinating disease characterised by relapsing and chronic neurological impairment. While traditionally CNS autoantigen-specific CD4+ T cells have been considered the culprits in the initial phase of the disease, recent observations have altered this concept. It is now recognised that other T lymphocyte subclasses can initiate CNS demyelination. In addition, other cell types and molecules may play an important role in MS pathogenesis. There is overwhelming evidence that MS is a dynamic process, in which recurrent episodes of blood–brain barrier disruption and CNS inflammation play a crucial role in early disease stages, leading eventually to the largely irreversible changes of demyelination, gliosis and axonal degeneration. These observations may have important therapeutic implications. Within the last ten years, several medications have been approved for MS treatment. These agents, all of which are given parenterally, are only partially effective and are often associated with adverse effects and potential toxicities. The number and different types of medications used for MS are likely to increase in the near future, as several novel therapies are currently tested in clinical trials. 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors, ‘statins’, are cholesterol-lowering drugs that are given orally, are safe and have biological effects independent of their cholesterol-reducing properties. Recent reports have shown that statins have anti-inflammatory and neuroprotective properties that may be beneficial in the treatment of MS. This article will outline experimental evidence that suggests potential clinical benefits of statins for MS patients.


Neuroimmunology and Neuroinflammation | 2014

Immunodominant T-cell epitopes of MOG reside in its transmembrane and cytoplasmic domains in EAE

Aparna Shetty; Sheena Gupta; Michel Varrin-Doyer; Martin Weber; Thomas Prod'homme; Nicolas Molnarfi; Niannian Ji; Patricia A. Nelson; Juan C. Patarroyo; Ulf Schulze-Topphoff; Stephen Fogal; Thomas G. Forsthuber; Raymond A. Sobel; Claude C.A. Bernard; Anthony J. Slavin; Scott S. Zamvil

Objective: Studies evaluating T-cell recognition of myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis (MS) and its model, experimental autoimmune encephalomyelitis (EAE), have focused mostly on its 117 amino acid (aa) extracellular domain, especially peptide (p) 35-55. We characterized T-cell responses to the entire 218 aa MOG sequence, including its transmembrane and cytoplasmic domains. Methods: T-cell recognition in mice was examined using overlapping peptides and intact full-length mouse MOG. EAE was evaluated by peptide immunization and by adoptive transfer of MOG epitope-specific T cells. Frequency of epitope-specific T cells was examined by ELISPOT. Results: Three T-cell determinants of MOG were discovered in its transmembrane and cytoplasmic domains, p119–132, p181–195, and p186–200. Transmembrane MOG p119-132 induced clinical EAE, CNS inflammation, and demyelination as potently as p35-55 in C57BL/6 mice and other H-2b strains. p119-128 contained its minimal encephalitogenic epitope. p119-132 did not cause disease in EAE-susceptible non-H-2b strains, including Biozzi, NOD, and PL/J. MOG p119-132–specific T cells produced Th1 and Th17 cytokines and transferred EAE to wild-type recipient mice. After immunization with full-length MOG, a significantly higher frequency of MOG-reactive T cells responded to p119-132 than to p35-55, demonstrating that p119-132 is an immunodominant encephalitogenic epitope. MOG p181-195 did not cause EAE, and MOG p181-195–specific T cells could not transfer EAE into wild-type or highly susceptible T- and B-cell–deficient mice. Conclusions: Transmembrane and cytoplasmic domains of MOG contain immunodominant T-cell epitopes in EAE. A CNS autoantigen can also contain nonpathogenic stimulatory T-cell epitopes. Recognition that a myelin antigen contains multiple encephalitogenic and nonencephalitogenic determinants may have implications for therapeutic development in MS.

Collaboration


Dive into the Thomas Prod'homme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude C.A. Bernard

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Stüve

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge