Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Quast is active.

Publication


Featured researches published by Thomas Quast.


Nature | 2014

Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

Tobias Bald; Thomas Quast; Jennifer Landsberg; Meri Rogava; Nicole Glodde; Dorys Lopez-Ramos; Judith Kohlmeyer; Stefanie Riesenberg; Debby van den Boorn-Konijnenberg; Cornelia Hömig-Hölzel; Raphael Reuten; Benjamin Schadow; Heike Weighardt; Daniela Wenzel; Iris Helfrich; Dirk Schadendorf; Wilhelm Bloch; Marco Bianchi; Claire Lugassy; Raymond L. Barnhill; Manuel Koch; Bernd K. Fleischmann; Irmgard Förster; Wolfgang Kastenmüller; Waldemar Kolanus; Michael Hölzel; Evelyn Gaffal; Thomas Tüting

Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma–endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere with metastatic progression.


Nature | 2006

Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance.

Markus Hafner; Anton Schmitz; Imke Grüne; Seergazhi G. Srivatsan; Bianca Paul; Waldemar Kolanus; Thomas Quast; Elisabeth Kremmer; Inga Bauer; Michael Famulok

G proteins are an important class of regulatory switches in all living systems. They are activated by guanine nucleotide exchange factors (GEFs), which facilitate the exchange of GDP for GTP. This activity makes GEFs attractive targets for modulating disease-relevant G-protein-controlled signalling networks. GEF inhibitors are therefore of interest as tools for elucidating the function of these proteins and for therapeutic intervention; however, only one small molecule GEF inhibitor, brefeldin A (BFA), is currently available. Here we used an aptamer displacement screen to identify SecinH3, a small molecule antagonist of cytohesins. The cytohesins are a class of BFA-resistant small GEFs for ADP-ribosylation factors (ARFs), which regulate cytoskeletal organization, integrin activation or integrin signalling. The application of SecinH3 in human liver cells showed that insulin-receptor-complex-associated cytohesins are required for insulin signalling. SecinH3-treated mice show increased expression of gluconeogenic genes, reduced expression of glycolytic, fatty acid and ketone body metabolism genes in the liver, reduced liver glycogen stores, and a compensatory increase in plasma insulin. Thus, cytohesin inhibition results in hepatic insulin resistance. Because insulin resistance is among the earliest pathological changes in type 2 diabetes, our results show the potential of chemical biology for dissecting the molecular pathogenesis of this disease.


Nature Immunology | 2011

Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation.

Marc Beyer; Yasser Thabet; Roman Ulrich Müller; Timothy J. Sadlon; Sabine Classen; Katharina Lahl; Samik Basu; Xuyu Zhou; Samantha L. Bailey-Bucktrout; Wolfgang Krebs; Eva A. Schönfeld; Jan P. Böttcher; Tatiana N. Golovina; Christian T. Mayer; Andrea Hofmann; Daniel Sommer; Svenja Debey-Pascher; Elmar Endl; Andreas Limmer; Keli L. Hippen; Bruce R. Blazar; Robert Balderas; Thomas Quast; Andreas Waha; Günter Mayer; Michael Famulok; Percy A. Knolle; Claudia Wickenhauser; Waldemar Kolanus; Bernhard Schermer

Regulatory T cells (Treg cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (Teff cell) function and gain of suppressive activity by Treg cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of Treg cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3′ untranslated region. Release of SATB1 from the control of Foxp3 in Treg cells caused loss of suppressive function, establishment of transcriptional Teff cell programs and induction of Teff cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining Treg cell functionality.


PLOS Genetics | 2010

Myeloid Cell-Restricted Insulin Receptor Deficiency Protects Against Obesity-Induced Inflammation and Systemic Insulin Resistance

Jan Mauer; Bhagirath Chaurasia; Leona Plum; Thomas Quast; Brigitte Hampel; Matthias Blüher; Waldemar Kolanus; C. Ronald Kahn; Jens C. Brüning

A major component of obesity-related insulin resistance is the establishment of a chronic inflammatory state with invasion of white adipose tissue by mononuclear cells. This results in the release of pro-inflammatory cytokines, which in turn leads to insulin resistance in target tissues such as skeletal muscle and liver. To determine the role of insulin action in macrophages and monocytes in obesity-associated insulin resistance, we conditionally inactivated the insulin receptor (IR) gene in myeloid lineage cells in mice (IRΔmyel-mice). While these animals exhibit unaltered glucose metabolism on a normal diet, they are protected from the development of obesity-associated insulin resistance upon high fat feeding. Euglycemic, hyperinsulinemic clamp studies demonstrate that this results from decreased basal hepatic glucose production and from increased insulin-stimulated glucose disposal in skeletal muscle. Furthermore, IRΔmyel-mice exhibit decreased concentrations of circulating tumor necrosis factor (TNF) α and thus reduced c-Jun N-terminal kinase (JNK) activity in skeletal muscle upon high fat feeding, reflecting a dramatic reduction of the chronic and systemic low-grade inflammatory state associated with obesity. This is paralleled by a reduced accumulation of macrophages in white adipose tissue due to a pronounced impairment of matrix metalloproteinase (MMP) 9 expression and activity in these cells. These data indicate that insulin action in myeloid cells plays an unexpected, critical role in the regulation of macrophage invasion into white adipose tissue and in the development of obesity-associated insulin resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Requirement of CCL17 for CCR7- and CXCR4-dependent migration of cutaneous dendritic cells

Susanne Stutte; Thomas Quast; Nancy Gerbitzki; Terhi Savinko; Nina Novak; J. Reifenberger; Bernhard Homey; Waldemar Kolanus; Harri Alenius; Irmgard Förster

Chemokines are known to regulate the steady-state and inflammatory migration of cutaneous dendritic cells (DCs). The β-chemokine CCL17, a ligand of CCR4, is inducibly expressed in a subset of DCs and is strongly up-regulated in atopic diseases. Using an atopic dermatitis model, we show that CCL17-deficient mice develop acanthosis as WT mice, whereas dermal inflammation, T helper 2-type cytokine production, and the allergen-specific humoral immune response are significantly decreased. Notably, CCL17-deficient mice retained Langerhans cells (LCs) in the lesional skin after chronic allergen exposure, whereas most LCs emigrated from the epidermis of allergen-treated WT controls into draining lymph nodes (LNs). Moreover, CCL17-deficient LCs showed impaired emigration from the skin after exposure to a contact sensitizer. In contrast, the absence of CCR4 had no effect on cutaneous DC migration and development of atopic dermatitis symptoms. As an explanation for the major migratory defect of CCL17-deficient DCs in vivo, we demonstrate impaired mobility of CCL17-deficient DCs to CCL19/21 in 3D in vitro migration assays and a blockade of intracellular calcium release in response to CCR7 ligands. In addition, responsiveness of CCL17-deficient DCs to CXCL12 was impaired as well. We demonstrate that the inducible chemokine CCL17 sensitizes DCs for CCR7- and CXCR4-dependent migration to LN-associated homeostatic chemokines under inflammatory conditions and thus plays an important role in cutaneous DC migration.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mannose receptor polyubiquitination regulates endosomal recruitment of p97 and cytosolic antigen translocation for cross-presentation

Matthias Zehner; Achmet Imam Chasan; Verena Schuette; Maria Embgenbroich; Thomas Quast; Waldemar Kolanus; Sven Burgdorf

The molecular mechanisms regulating noncanonical protein transport across cellular membranes are poorly understood. Cross-presentation of exogenous antigens on MHC I molecules by dendritic cells (DCs) generally requires antigen translocation from the endosomal compartment into the cytosol for proteasomal degradation. In this study, we demonstrate that such translocation is controlled by the endocytic receptor and regulated by ubiquitination. Antigens internalized by the mannose receptor (MR), an endocytic receptor that targets its ligands specifically toward cross-presentation, were translocated into the cytosol only after attachment of a lysin48-linked polyubiquitin chain to the cytosolic region of the MR. Furthermore, we identify TSG101 as a central regulator of MR ubiquitination and antigen translocation. Importantly, we demonstrate that MR polyubiquitination mediates the recruitment of p97, a member of the ER-associated degradation machinery that provides the driving force for antigen translocation, toward the endosomal membrane, proving the central role of the endocytic receptor and its ubiquitination in antigen translocation.


Blood | 2009

Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells.

Thomas Quast; Barbara Tappertzhofen; Cora Schild; Jessica Grell; Niklas Czeloth; Reinhold Förster; Ronen Alon; Line Fraemohs; Katrin Dreck; Christian Weber; Tim Lämmermann; Michael Sixt; Waldemar Kolanus

Adhesion and motility of mammalian leukocytes are essential requirements for innate and adaptive immune defense mechanisms. We show here that the guanine nucleotide exchange factor cytohesin-1, which had previously been demonstrated to be an important component of beta-2 integrin activation in lymphocytes, regulates the activation of the small GTPase RhoA in primary dendritic cells (DCs). Cytohesin-1 and RhoA are both required for the induction of chemokine-dependent conformational changes of the integrin beta-2 subunit of DCs during adhesion under physiological flow conditions. Furthermore, use of RNAi in murine bone marrow DCs (BM-DCs) revealed that interference with cytohesin-1 signaling impairs migration of wild-type dendritic cells in complex 3D environments and in vivo. This phenotype was not observed in the complete absence of integrins. We thus demonstrate an essential role of cytohesin-1/RhoA during ameboid migration in the presence of integrins and further suggest that DCs without integrins switch to a different migration mode.


PLOS ONE | 2013

Salt-dependent chemotaxis of macrophages

Silke Müller; Thomas Quast; Agnes Schröder; Stephanie Hucke; Luisa Klotz; Jonathan Jantsch; Rupert Gerzer; Ruth Hemmersbach; Waldemar Kolanus

Besides their role in immune system host defense, there is growing evidence that macrophages may also be important regulators of salt homeostasis and blood pressure by a TonEBP-VEGF-C dependent buffering mechanism. As macrophages are known to accumulate in the skin of rats fed under high salt diet conditions and are pivotal for removal of high salt storage, the question arose how macrophages sense sites of high sodium storage. Interestingly, we observed that macrophage-like RAW264.7 cells, murine bone marrow-derived macrophages and peritoneal macrophages recognize NaCl hypertonicity as a chemotactic stimulus and migrate in the direction of excess salt concentration by using an in vitro transwell migration assay. While RAW264.7 cells migrated toward NaCl in a dose-dependent fashion, no migratory response toward isotonic or hypotonic media controls, or other osmo-active agents, e.g. urea or mannitol, could be detected. Interestingly, we could not establish a specific role of the osmoprotective transcription factor TonEBP in regulating salt-dependent chemotaxis, since the specific migration of bone marrow-derived macrophages following RNAi of TonEBP toward NaCl was not altered. Although the underlying mechanism remains unidentified, these data point to a thus far unappreciated role for NaCl-dependent chemotaxis of macrophages in the clearance of excess salt, and suggest the existence of novel NaCl sensor/effector circuits, which are independent of the TonEBP system.


Immunity | 2017

CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming

Anna Brewitz; Sarah Eickhoff; Sabrina Dähling; Thomas Quast; Sammy Bedoui; Richard A. Kroczek; Christian Kurts; Natalio Garbi; Winfried Barchet; Matteo Iannacone; Frederick Klauschen; Waldemar Kolanus; Tsuneyasu Kaisho; Marco Colonna; Ronald N. Germain; Wolfgang Kastenmüller

SUMMARY Adaptive cellular immunity is initiated by antigen‐specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8+ T cell antigen‐driven activation in a CCR5‐dependent fashion. Furthermore, activated CD8+ T cells orchestrated the local recruitment of lymph node‐resident XCR1 chemokine receptor‐expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8+ T cell‐mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1+ DCs, thereby optimizing XCR1+ DC maturation and cross‐presentation. These data support a model in which CD8+ T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition. Graphical Abstract Figure. No Caption available. HighlightsCXCR3 and CCR5 selectively control intranodal pDC migrationCD8+ T cells instruct pDC recruitment via CCL3 and CCL4CD8+ T cells directly recruit XCR1+ DCs via XCL1Active colocalization of XCR1+ DCs and pDCs supports DC cooperativity &NA; pDCs and XCR1+ dendritic cells are critical for the generation of antiviral CD8+ T cell responses. Brewitz and colleagues demonstrate that primed CD8+ T cells reorganize the intranodal dendritic cell network to optimize pDC and XCR1+ DC cooperativity and thereby enhance CD8+ T cell immunity.


Blood | 2009

A fundamental role of mAbp1 in neutrophils: impact on beta(2) integrin-mediated phagocytosis and adhesion in vivo.

Ronald Gerstl; Ingrid Mannigel; Katy Niedung; David Frommhold; Klaus Panthel; Jürgen Heesemann; Michael Sixt; Thomas Quast; Waldemar Kolanus; Attila Mócsai; Jürgen Wienands; Markus Sperandio; Barbara Walzog

The mammalian actin-binding protein 1 (mAbp1, Hip-55, SH3P7) is phosphorylated by the nonreceptor tyrosine kinase Syk that has a fundamental effect for several beta(2) integrin (CD11/CD18)-mediated neutrophil functions. Live cell imaging showed a dynamic enrichment of enhanced green fluorescence protein-tagged mAbp1 at the phagocytic cup of neutrophil-like differentiated HL-60 cells during beta(2) integrin-mediated phagocytosis of serum-opsonized Escherichia coli. The genetic absence of Syk or its pharmacologic inhibition using piceatannol abrogated the proper localization of mAbp1 at the phagocytic cup. The genetic absence or down-regulation of mAbp1 using the RNA interference technique significantly compromised beta(2) integrin-mediated phagocytosis of serum-opsonized E coli or Salmonella typhimurium in vitro as well as clearance of S typhimurium infection in vivo. Moreover, the genetic absence of mAbp1 almost completely abrogated firm neutrophil adhesion under physiologic shear stress conditions in vitro as well as leukocyte adhesion and extravasation in inflamed cremaster muscle venules of mice treated with tumor-necrosis factor alpha. Functional analysis showed that the down-regulation of mAbp1 diminished the number of beta(2) integrin clusters in the high-affinity conformation under flow conditions. These unanticipated results define mAbp1 as a novel molecular player in integrin biology that is critical for phagocytosis and firm neutrophil adhesion under flow conditions.

Collaboration


Dive into the Thomas Quast's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnes Schröder

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Beyer

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge