Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas R. Caulfield is active.

Publication


Featured researches published by Thomas R. Caulfield.


Acta Neuropathologica | 2013

Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS

Tania F. Gendron; Kevin F. Bieniek; Yong Jie Zhang; Karen Jansen-West; Peter E.A. Ash; Thomas R. Caulfield; Lillian M. Daughrity; Judith Dunmore; Monica Castanedes-Casey; Jeannie Chew; Danielle M. Cosio; Marka van Blitterswijk; Wing C. Lee; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; Leonard Petrucelli

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes “c9FTD/ALS” are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.


Acta Neuropathologica | 2014

Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress

Yong Jie Zhang; Karen Jansen-West; Ya Fei Xu; Tania F. Gendron; Kevin F. Bieniek; Wen Lang Lin; Hiroki Sasaguri; Thomas R. Caulfield; Jaime Hubbard; Lillian M. Daughrity; Jeannie Chew; Veronique V. Belzil; Mercedes Prudencio; Jeannette N. Stankowski; Monica Castanedes-Casey; Ena C. Whitelaw; Peter E.A. Ash; Michael DeTure; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; Leonard Petrucelli

The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the “c9RAN proteins” thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.


Clinical Cancer Research | 2013

Stearoyl-CoA Desaturase 1 Is a Novel Molecular Therapeutic Target for Clear Cell Renal Cell Carcinoma

Christina A. von Roemeling; Laura A. Marlow; Johnny Wei; Simon J. Cooper; Thomas R. Caulfield; Kevin J. Wu; Winston Tan; Han W. Tun; John A. Copland

Purpose: We set out to identify Stearoyl-CoA desaturase 1 (SCD1) as a novel molecular target in clear cell renal cell carcinoma (ccRCC) and examine its role in tumor cell growth and viability in vitro and in vivo independently as well as in combination with current U.S. Food and Drug Administration (FDA)-approved regimens. Experimental Design: Patient normal and ccRCC tissue samples and cell lines were examined for SCD1 expression. Genetic knockdown models and targeted inhibition of SCD1 through use of a small molecule inhibitor, A939572, were analyzed for growth, apoptosis, and alterations in gene expression using gene array analysis. Therapeutic models of synergy were evaluated utilizing pharmacologic inhibition of SCD1 with the tyrosine kinase inhibitors (TKI) sunitinib and pazopanib, and the mTOR inhibitor temsirolimus. Results: Our studies identify increased SCD1 expression in all stages of ccRCC. Both genetic knockdown and pharmacologic inhibition of SCD1 decreased tumor cell proliferation and induced apoptosis in vitro and in vivo. Upon gene array, quantitative real-time PCR, and protein analysis of A939572-treated or SCD1 lentiviral knockdown samples, induction of endoplasmic reticulum stress response signaling was observed, providing mechanistic insight for SCD1 activity in ccRCC. Furthermore, combinatorial application of A939572 with temsirolimus synergistically inhibited tumor growth in vitro and in vivo. Conclusions: Increased SCD1 expression supports ccRCC viability and therefore we propose it as a novel molecular target for therapy either independently or in combination with an mTOR inhibitor for patients whose disease cannot be remedied with surgical intervention, such as in cases of advanced or metastatic disease. Clin Cancer Res; 19(9); 2368–80. ©2013 AACR.


Human Molecular Genetics | 2013

The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation

Yong Jie Zhang; Thomas R. Caulfield; Yafei Xu; Tania F. Gendron; Jaime Hubbard; Caroline Stetler; Hiroki Sasaguri; Ena C. Whitelaw; Shuyi Cai; Wing C. Lee; Leonard Petrucelli

TAR DNA-binding protein-43 (TDP-43) is the principal component of ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and the most common pathological subtype of frontotemporal dementia—frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP). To date, the C-terminus of TDP-43, which is aggregation-prone and contains almost all ALS-associated mutations, has garnered much attention while the functions of the N-terminus of TDP-43 remain largely unknown. To bridge this gap in our knowledge, we utilized novel cell culture and computer-assisted models to evaluate which region(s) of TDP-43 regulate its folding, self-interaction, biological activity and aggregation. We determined that the extreme N-terminus of TDP-43, specifically the first 10 residues, regulates folding of TDP-43 monomers necessary for proper homodimerization and TDP-43-regulated splicing. Despite such beneficial functions, we discovered an interesting dichotomy: full-length TDP-43 aggregation, which is believed to be a pathogenic process, also requires the extreme N-terminus of TDP-43. As such, we provide new insight into the structural basis for TDP-43 function and aggregation, and we suggest that stabilization of TDP-43 homodimers, the physiologically active form of TDP-43, may be a promising therapeutic strategy for ALS and FTLD-TDP.


PLOS Computational Biology | 2014

Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.

Thomas R. Caulfield; Fabienne C. Fiesel; Elisabeth L. Moussaud-Lamodière; Daniel F. A. R. Dourado; Samuel Coulbourn Flores; Wolfdieter Springer

Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinsons disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkins enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through targeted drug design.


EMBO Reports | 2015

(Patho‐)physiological relevance of PINK1‐dependent ubiquitin phosphorylation

Fabienne C. Fiesel; Maya Ando; Roman Hudec; Anneliese R Hill; Monica Castanedes-Casey; Thomas R. Caulfield; Elisabeth L. Moussaud-Lamodière; Jeannette N. Stankowski; Peter O. Bauer; Oswaldo Lorenzo-Betancor; Isidre Ferrer; José Matías Arbelo; Joanna Siuda; Li Chen; Valina L. Dawson; Ted M. Dawson; Zbigniew K. Wszolek; Owen A. Ross; Dennis W. Dickson; Wolfdieter Springer

Mutations in PINK1 and PARKIN cause recessive, early‐onset Parkinsons disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65‐Ub) have already been suggested from in vitro experiments, but its (patho‐)physiological significance remains unknown. We have generated novel antibodies and assessed pS65‐Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65‐Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65‐Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65‐Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65‐Ub functions and fully explore its potential for biomarker or therapeutic development.


Brain | 2017

Heterozygous PINK1 p.G411S increases risk of Parkinson’s disease via a dominant-negative mechanism

Andreas Puschmann; Fabienne C. Fiesel; Thomas R. Caulfield; Roman Hudec; Maya Ando; Dominika Truban; Xu Hou; Kotaro Ogaki; Michael G. Heckman; Elle D. James; Maria Swanberg; Itzia Jimenez-Ferrer; Oskar Hansson; Grzegorz Opala; Joanna Siuda; Magdalena Boczarska-Jedynak; Andrzej Friedman; Dariusz Koziorowski; Jan O. Aasly; Timothy Lynch; George D. Mellick; Megha Mohan; Peter A. Silburn; Yanosh Sanotsky; Carles Vilariño-Güell; Matthew J. Farrer; Li Chen; Valina L. Dawson; Ted M. Dawson; Zbigniew K. Wszolek

See Gandhi and Plun-Favreau (doi:10.1093/aww320) for a scientific commentary on this article. It has been postulated that heterozygous mutations in recessive Parkinson’s genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson’s disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson’s disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson’s disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a partial dominant-negative function phenotype.


Journal of Parkinson's disease | 2017

PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson’s Disease Pathobiology?

Dominika Truban; Xu Hou; Thomas R. Caulfield; Fabienne C. Fiesel; Wolfdieter Springer

The first clinical description of Parkinson’s disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway.


Journal of Medicinal Chemistry | 2013

Optimization of Peptide Hydroxamate Inhibitors of Insulin-Degrading Enzyme Reveals Marked Substrate-Selectivity

Samer O. Abdul-Hay; Amy L. Lane; Thomas R. Caulfield; Clémence Claussin; Juliette Bertrand; Amandine Masson; Shakeel Choudhry; Abdul H. Fauq; Guhlam M. Maharvi; Malcolm A. Leissring

Insulin-degrading enzyme (IDE) is an atypical zinc-metallopeptidase that degrades insulin and the amyloid ß-protein and is strongly implicated in the pathogenesis of diabetes and Alzheimers disease. We recently developed the first effective inhibitors of IDE, peptide hydroxamates that, while highly potent and selective, are relatively large (MW > 740) and difficult to synthesize. We present here a facile synthetic route that yields enantiomerically pure derivatives comparable in potency to the parent compounds. Through the generation of truncated variants, we identified a compound with significantly reduced size (MW = 455.5) that nonetheless retains good potency (ki = 78 ± 11 nM) and selectivity for IDE. Notably, the potency of these inhibitors was found to vary as much as 60-fold in a substrate-specific manner, an unexpected finding for active site-directed inhibitors. Collectively, our findings demonstrate that potent, small-molecule IDE inhibitors can be developed that, in certain instances, can be highly substrate selective.


Human Mutation | 2015

Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin

Fabienne C. Fiesel; Thomas R. Caulfield; Elisabeth L. Moussaud-Lamodière; Kotaro Ogaki; Daniel F. A. R. Dourado; Samuel Coulbourn Flores; Owen A. Ross; Wolfdieter Springer

Mutations in the PARKIN/PARK2 gene that result in loss‐of‐function of the encoded, neuroprotective E3 ubiquitin ligase Parkin cause recessive, familial early‐onset Parkinson disease. As an increasing number of rare Parkin sequence variants with unclear pathogenicity are identified, structure–function analyses will be critical to determine their disease relevance. Depending on the specific amino acids affected, several distinct pathomechanisms can result in loss of Parkin function. These include disruption of overall Parkin folding, decreased solubility, and protein aggregation. However pathogenic effects can also result from misregulation of Parkin autoinhibition and of its enzymatic functions. In addition, interference of binding to coenzymes, substrates, and adaptor proteins can affect its catalytic activity too. Herein, we have performed a comprehensive structural and functional analysis of 21 PARK2 missense mutations distributed across the individual protein domains. Using this combined approach, we were able to pinpoint some of the pathogenic mechanisms of individual sequence variants. Similar analyses will be critical in gaining a complete understanding of the complex regulations and enzymatic functions of Parkin. These studies will not only highlight the important residues, but will also help to develop novel therapeutics aimed at activating and preserving an active, neuroprotective form of Parkin.

Collaboration


Dive into the Thomas R. Caulfield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Copland

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Wolfdieter Springer

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ted M. Dawson

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge