Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han W. Tun is active.

Publication


Featured researches published by Han W. Tun.


Scientific Reports | 2016

Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes

Yaqing Qie; Hengfeng Yuan; Christina A. von Roemeling; Yuanxin Chen; Xiujie Liu; Kevin Shih; Joshua Knight; Han W. Tun; Robert E. Wharen; Wen Jiang; Betty Y.S. Kim

Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.


PLOS ONE | 2010

Pathway Signature and Cellular Differentiation in Clear Cell Renal Cell Carcinoma

Han W. Tun; Laura A. Marlow; Christina A. von Roemeling; Simon J. Cooper; Pamela A. Kreinest; Kevin J. Wu; Bruce A. Luxon; Mala Sinha; Panos Z. Anastasiadis; John A. Copland

Background Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer. The purpose of this study is to define a biological pathway signature and a cellular differentiation program in ccRCC. Methodology We performed gene expression profiling of early-stage ccRCC and patient-matched normal renal tissue using Affymetrix HG-U133a and HG-U133b GeneChips combined with a comprehensive bioinformatic analyses, including pathway analysis. The results were validated by real time PCR and IHC on two independent sample sets. Cellular differentiation experiments were performed on ccRCC cell lines and their matched normal renal epithelial cells, in differentiation media, to determine their mesenchymal differentiation potential. Principal Findings We identified a unique pathway signature with three major biological alterations—loss of normal renal function, down-regulated metabolism, and immune activation–which revealed an adipogenic gene expression signature linked to the hallmark lipid-laden clear cell morphology of ccRCC. Culturing normal renal and ccRCC cells in differentiation media showed that only ccRCC cells were induced to undergo adipogenic and, surprisingly, osteogenic differentiation. A gene expression signature consistent with epithelial mesenchymal transition (EMT) was identified for ccRCC. We revealed significant down-regulation of four developmental transcription factors (GATA3, TFCP2L1, TFAP2B, DMRT2) that are important for normal renal development. Conclusions ccRCC is characterized by a lack of epithelial differentiation, mesenchymal/adipogenic transdifferentiation, and pluripotent mesenchymal stem cell-like differentiation capacity in vitro. We suggest that down-regulation of developmental transcription factors may mediate the aberrant differentiation in ccRCC. We propose a model in which normal renal epithelial cells undergo dedifferentiation, EMT, and adipogenic transdifferentiation, resulting in ccRCC. Because ccRCC cells grown in adipogenic media regain the characteristic ccRCC phenotype, we have indentified a new in vitro ccRCC cell model more resembling ccRCC tumor morphology.


Clinical Cancer Research | 2013

Stearoyl-CoA Desaturase 1 Is a Novel Molecular Therapeutic Target for Clear Cell Renal Cell Carcinoma

Christina A. von Roemeling; Laura A. Marlow; Johnny Wei; Simon J. Cooper; Thomas R. Caulfield; Kevin J. Wu; Winston Tan; Han W. Tun; John A. Copland

Purpose: We set out to identify Stearoyl-CoA desaturase 1 (SCD1) as a novel molecular target in clear cell renal cell carcinoma (ccRCC) and examine its role in tumor cell growth and viability in vitro and in vivo independently as well as in combination with current U.S. Food and Drug Administration (FDA)-approved regimens. Experimental Design: Patient normal and ccRCC tissue samples and cell lines were examined for SCD1 expression. Genetic knockdown models and targeted inhibition of SCD1 through use of a small molecule inhibitor, A939572, were analyzed for growth, apoptosis, and alterations in gene expression using gene array analysis. Therapeutic models of synergy were evaluated utilizing pharmacologic inhibition of SCD1 with the tyrosine kinase inhibitors (TKI) sunitinib and pazopanib, and the mTOR inhibitor temsirolimus. Results: Our studies identify increased SCD1 expression in all stages of ccRCC. Both genetic knockdown and pharmacologic inhibition of SCD1 decreased tumor cell proliferation and induced apoptosis in vitro and in vivo. Upon gene array, quantitative real-time PCR, and protein analysis of A939572-treated or SCD1 lentiviral knockdown samples, induction of endoplasmic reticulum stress response signaling was observed, providing mechanistic insight for SCD1 activity in ccRCC. Furthermore, combinatorial application of A939572 with temsirolimus synergistically inhibited tumor growth in vitro and in vivo. Conclusions: Increased SCD1 expression supports ccRCC viability and therefore we propose it as a novel molecular target for therapy either independently or in combination with an mTOR inhibitor for patients whose disease cannot be remedied with surgical intervention, such as in cases of advanced or metastatic disease. Clin Cancer Res; 19(9); 2368–80. ©2013 AACR.


Molecular Cancer Therapeutics | 2012

Reexpression of Tumor Suppressor, sFRP1, Leads to Antitumor Synergy of Combined HDAC and Methyltransferase Inhibitors in Chemoresistant Cancers

Simon J. Cooper; Christina A. von Roemeling; Kylie H Kang; Laura A. Marlow; Stefan K. Grebe; Michael E. Menefee; Han W. Tun; Gerardo Colon-Otero; Edith A. Perez; John A. Copland

Metastatic solid tumors are aggressive and mostly drug resistant, leading to few treatment options and poor prognosis as seen with clear cell renal cell carcinoma (ccRCC) and triple-negative breast cancer (TNBC). Therefore, the identification of new therapeutic regimes for the treatment of metastatic disease is desirable. ccRCC and TNBC cell lines were treated with the HDAC inhibitor romidepsin and the methyltransferase inhibitor decitabine, two epigenetic modifying drugs approved by the U.S. Food and Drug Administration for the treatment of various hematologic malignancies. Cell proliferation analysis, flow cytometry, quantitative PCR, and immunoblotting techniques were used to evaluate the antitumor synergy of this drug combination and identify the reexpression of epigenetically silenced tumor suppressor genes. Combinatorial treatment of metastatic TNBC and stage IV ccRCC cell lines with romidepsin/decitabine leads to synergistic inhibition of cell growth and induction of apoptosis above levels of individual drug treatments alone. Synergistic reexpression of the tumor suppressor gene secreted frizzled-related protein one (sFRP1) was observed in combinatorial drug-treated groups. Silencing sFRP1 (short hairpin RNA) before combinatorial drug treatment showed that sFRP1 mediates the growth inhibitory and apoptotic activity of combined romidepsin/decitabine. Furthermore, addition of recombinant sFRP1 to ccRCC or TNBC cells inhibits cell growth in a dose-dependent manner through the induction of apoptosis, identifying that epigenetic silencing of sFRP1 contributes to renal and breast cancer cell survival. Combinatorial treatment with romidepsin and decitabine in drug resistant tumors is a promising treatment strategy. Moreover, recombinant sFRP1 may be a novel therapeutic strategy for cancers with suppressed sFRP1 expression. Mol Cancer Ther; 11(10); 2105–15. ©2012 AACR.


Oncogene | 2010

Loss of type III transforming growth factor-β receptor expression is due to methylation silencing of the transcription factor GATA3 in renal cell carcinoma

Simon J. Cooper; H. Zou; S. N. Legrand; Laura A. Marlow; C. A. Von Roemeling; Derek C. Radisky; Kevin J. Wu; Nadine Hempel; Vitaly Margulis; Han W. Tun; Gerard C. Blobe; Christopher G. Wood; John A. Copland

Loss of transforming growth factor-β receptor III (TβRIII) correlates with loss of transforming growth factor-β (TGF-β) responsiveness and suggests a role for dysregulated TGF-β signaling in clear cell renal cell carcinoma (ccRCC) progression and metastasis. Here we identify that for all stages of ccRCC TβRIII expression is downregulated in patient-matched tissue samples and cell lines. We find that this loss of expression is not due to methylation of the gene and we define GATA3 as the first transcriptional factor to positively regulate TβRIII expression in human cells. We localize GATA3′s binding to a 10-bp region of the TβRIII proximal promoter. We demonstrate that GATA3 mRNA is downregulated in all stages, of ccRCC, mechanistically show that GATA3 is methylated in ccRCC patient tumor tissues as well as cell lines, and that inhibiting GATA3 expression in normal renal epithelial cells downregulates TβRIII mRNA and protein expression. These data support a sequential model whereby loss of GATA3 expression through epigenetic silencing decreases TβRIII expression during ccRCC progression.


Cancer Research | 2014

Neuronal Pentraxin 2 Supports Clear Cell Renal Cell Carcinoma by Activating the AMPA-Selective Glutamate Receptor-4

Christina A. von Roemeling; Derek C. Radisky; Laura A. Marlow; Simon J. Cooper; Stefan K. Grebe; Panagiotis Z Anastasiadis; Han W. Tun; John A. Copland

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and has the highest propensity to manifest as metastatic disease. Recent characterizations of the genetic signature of ccRCC have revealed several factors correlated with tumor cell migration and invasion; however, the specific events driving malignancy are not well defined. Furthermore, there remains a lack of targeted therapies that result in long-term, sustainable response in patients with metastatic disease. We show here that neuronal pentraxin 2 (NPTX2) is overexpressed specifically in ccRCC primary tumors and metastases, and that it contributes to tumor cell viability and promotes cell migration through its interaction with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluR4. We propose NPTX2 as a novel molecular target for therapy for patients with ccRCC diagnosed with or at risk of developing metastatic disease.


PLOS ONE | 2013

Pomalidomide Shows Significant Therapeutic Activity against CNS Lymphoma with a Major Impact on the Tumor Microenvironment in Murine Models

Zhimin Li; Yushi Qiu; Peng Huang; Brandy Edenfield; Jason Katz; Darius Babusis; Yang Tang; Michael A. Shirely; Mehran F. Moghaddam; John A. Copland; Han W. Tun

Primary CNS lymphoma carries a poor prognosis. Novel therapeutic agents are urgently needed. Pomalidomide (POM) is a novel immunomodulatory drug with anti-lymphoma activity. CNS pharmacokinetic analysis was performed in rats to assess the CNS penetration of POM. Preclinical evaluation of POM was performed in two murine models to assess its therapeutic activity against CNS lymphoma. The impact of POM on the CNS lymphoma immune microenvironment was evaluated by immunohistochemistry and immunofluorescence. In vitro cell culture experiments were carried out to further investigate the impact of POM on the biology of macrophages. POM crosses the blood brain barrier with CNS penetration of ~ 39%. Preclinical evaluations showed that it had significant therapeutic activity against CNS lymphoma with significant reduction in tumor growth rate and prolongation of survival, that it had a major impact on the tumor microenvironment with an increase in macrophages and natural killer cells, and that it decreased M2-polarized tumor-associated macrophages and increased M1-polarized macrophages when macrophages were evaluated based on polarization status. In vitro studies using various macrophage models showed that POM converted the polarization status of IL4-stimulated macrophages from M2 to M1, that M2 to M1 conversion by POM in the polarization status of lymphoma-associated macrophages is dependent on the presence of NK cells, that POM induced M2 to M1 conversion in the polarization of macrophages by inactivating STAT6 signaling and activating STAT1 signaling, and that POM functionally increased the phagocytic activity of macrophages. Based on our findings, POM is a promising therapeutic agent for CNS lymphoma with excellent CNS penetration, significant preclinical therapeutic activity, and a major impact on the tumor microenvironment. It can induce significant biological changes in tumor-associated macrophages, which likely play a major role in its therapeutic activity against CNS lymphoma. POM should be further evaluated in clinical trials.


The Journal of Clinical Endocrinology and Metabolism | 2015

Aberrant Lipid Metabolism in Anaplastic Thyroid Carcinoma Reveals Stearoyl CoA Desaturase 1 as a Novel Therapeutic Target

Christina A. von Roemeling; Laura A. Marlow; Anthony B. Pinkerton; Angela Crist; James L. Miller; Han W. Tun; Robert C. Smallridge; John A. Copland

CONTEXT Currently there are no efficacious therapies for patients with anaplastic thyroid carcinoma (ATC) that result in long-term disease stabilization or regression. OBJECTIVE We sought to identify pathways critical for ATC cell progression and viability in an effort to develop new therapeutic strategies. We investigated the effects of targeted inhibition of stearoyl-CoA desaturase 1 (SCD1), a constituent of fatty acid metabolism overexpressed in ATC. DESIGN A gene array of ATC and normal thyroid tissue was performed to identify gene transcripts demonstrating altered expression in tumor samples. Effects of pharmacological and the genetic inhibition of SCD1 on tumor cell viability as well as cell signaling responses to therapy were evaluated in in vitro and in vivo models of this rare, lethal malignancy. RESULTS The gene array analysis revealed consistent distortion of fatty acid metabolism and overexpression of SCD1 in ATC and well-differentiated thyroid carcinomas. SCD1 is critical for ATC cell survival and proliferation, the inhibition of which induced endoplasmic reticulum stress, activation of the unfolded protein response, and apoptosis. Combined suppression of endoplasmic reticulum-associated degradation, a prosurvival component of the unfolded protein response, using proteasome inhibitors resulted in a synergistic decrease in tumor cell proliferation and increased cell death. CONCLUSIONS SCD1 is a novel oncogenic factor specifically required for tumor cell viability in ATC. Furthermore, the expression of SCD1 appears to be correlated with thyroid tumor aggressiveness and may serve as a prognostic biomarker. These findings substantiate SCD1 as a novel tumor-specific target for therapy in patients with ATC and should be further investigated in a clinical setting.


Journal of Cell Science | 2012

Foxo3a drives proliferation in anaplastic thyroid carcinoma through transcriptional regulation of cyclin A1: a paradigm shift that impacts current therapeutic strategies.

Laura A. Marlow; Christina A. von Roemeling; Simon J. Cooper; Yilin Zhang; Stephen D. Rohl; Shilpi Arora; Irma M. Gonzales; David O. Azorsa; Honey V. Reddi; Han W. Tun; Heike Döppler; Peter Storz; Robert C. Smallridge; John A. Copland

Summary The Forkhead transcription factor, FoxO3a, is a known suppressor of primary tumor growth through transcriptional regulation of key genes regulating cell cycle arrest and apoptosis. In many types of cancer, in response to growth factor signaling, FoxO3a is phosphorylated by Akt, resulting in its exclusion from the nucleus. Here we show that FoxO3a remains nuclear in anaplastic thyroid carcinoma (ATC). This correlates with lack of Akt phosphorylation at serine473 in ATC cell lines and tissues of ATC patients, providing a potential explanation for nuclear FoxO3a. Mechanistically, nuclear FoxO3a promotes cell cycle progression by transcriptional upregulation of cyclin A1, promoting proliferation of human ATC cells. Silencing FoxO3a with a reverse genetics approach leads to downregulation of CCNA1 mRNA and protein. These combined data suggest an entirely novel function for FoxO3a in ATC promotion by enhancing cell cycle progression and tumor growth through transcriptional upregulation of cyclin A1. This is clinically relevant since we detected highly elevated CCNA1 mRNA and protein levels in tumor tissues of ATC patients. Our data indicate therapeutic inactivation of FoxO3a may lead to attenuation of tumor expansion in ATC. This new paradigm also suggests caution in relation to current dogma focused upon reactivation of FoxO3a as a therapeutic strategy against cancers harboring active PI3-K and Akt signaling pathways.


The Journal of Clinical Endocrinology and Metabolism | 2015

S100A8 is a Novel Therapeutic Target for Anaplastic Thyroid Carcinoma

Ashley N. Reeb; Wen Li; Will Sewell; Laura A. Marlow; Han W. Tun; Robert C. Smallridge; John A. Copland; Kyle Spradling; Reigh Yi Lin

CONTEXT Anaplastic thyroid carcinoma (ATC) is one of the most deadly human malignancies. It is 99% lethal, and patients have a median survival of only 6 months after diagnosis. Despite these grim statistics, the mechanism underlying the tumorigenic capability of ATC cells is unclear. OBJECTIVE S100A8 and S100A9 proteins have emerged as critical mediators in cancer. The aim was to investigate the expression and function of S100A8 and S100A9 in ATC and the mechanisms involved. DESIGN We determined the expression of S100A8 and S100A9 in human ATC by gene array analysis and immunohistochemistry. Using RNAi-mediated stable gene knockdown in human ATC cell lines and bioluminescent imaging of orthotopic and lung metastasis mouse models of human ATC, we investigated the effects of S100A8 and S100A9 on tumorigenesis and metastasis. RESULTS We demonstrated that S100A8 and S100A9 were overexpressed in ATC but not in other types of thyroid carcinomas. In vivo analysis in mice using ATC cells that had S100A8 knocked down revealed reduced tumor growth and lung metastasis, as well as significantly prolonged animal survival. Mechanistic investigations showed that S100A8 promotes ATC cell proliferation through an interaction with RAGE, which activates the p38, ERK1/2 and JNK signaling pathways in the tumor cells. CONCLUSIONS These findings establish a novel role for S100A8 in the promoting and enhancing of ATC progression. They further suggest that the inhibition of S100A8 could represent a relevant therapeutic target, with the potential of enabling a more effective treatment path for this deadly disease.

Collaboration


Dive into the Han W. Tun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge