Thomas S. Davies
Cardiff University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas S. Davies.
Cytokine & Growth Factor Reviews | 2015
Dipak Purshottam Ramji; Thomas S. Davies
Atherosclerosis, a chronic inflammatory disorder of the arteries, is responsible for most deaths in westernized societies with numbers increasing at a marked rate in developing countries. The disease is initiated by the activation of the endothelium by various risk factors leading to chemokine-mediated recruitment of immune cells. The uptake of modified lipoproteins by macrophages along with defective cholesterol efflux gives rise to foam cells associated with the fatty streak in the early phase of the disease. As the disease progresses, complex fibrotic plaques are produced as a result of lysis of foam cells, migration and proliferation of vascular smooth muscle cells and continued inflammatory response. Such plaques are stabilized by the extracellular matrix produced by smooth muscle cells and destabilized by matrix metalloproteinase from macrophages. Rupture of unstable plaques and subsequent thrombosis leads to clinical complications such as myocardial infarction. Cytokines are involved in all stages of atherosclerosis and have a profound influence on the pathogenesis of this disease. This review will describe our current understanding of the roles of different cytokines in atherosclerosis together with therapeutic approaches aimed at manipulating their actions.
British Journal of Nutrition | 2014
Sarah C. Brennan; Thomas S. Davies; Martin Schepelmann; Daniela Riccardi
The extracellular Ca-sensing receptor (CaSR) is a sensor for a number of key nutrients within the body, including Ca ions (Ca²⁺) and L-amino acids. The CaSR is expressed in a number of specialised cells within the gastrointestinal (GI) tract, and much work has been done to examine CaSRs role as a nutrient sensor in this system. This review article examines two emerging roles for the CaSR within the GI tract--as a mediator of kokumi taste modulation in taste cells and as a regulator of dietary hormone release in response to L-amino acids in the intestine.
Human Reproduction | 2014
Gareth Willis; Katherine Connolly; Kristin Ladell; Thomas S. Davies; Irina A. Guschina; Dipak Purshottam Ramji; Kelly Louise Miners; David A. Price; Aled Clayton; Philip E. James; Dafydd Aled Rees
STUDY QUESTION Are circulating microparticles (MPs) altered in young women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Women with PCOS have elevated concentrations of circulating platelet-derived MPs, which exhibit increased annexin V binding and altered microRNA (miR) profiles compared with healthy volunteers. WHAT IS KNOWN ALREADY Some studies have shown that cardiovascular risk is increased in young women with PCOS but the mechanisms by which this occurs are uncertain. Circulating MPs are elevated in patients with cardiovascular disease but the characteristics of MPs in patients with PCOS are unclear. STUDY DESIGN, SIZE, DURATION Case-control study comprising 17 women with PCOS (mean ± SD; age 31 ± 7 years, BMI 29 ± 6 kg/m(2)) and 18 healthy volunteers (age 31 ± 6 years, BMI 30 ± 6 kg/m(2)). PARTICIPANTS/MATERIALS, SETTING, METHODS The study was conducted in a University hospital. Nanoparticle tracking analysis (NTA) and flow cytometry (CD41 platelet, CD11b monocyte, CD144 endothelial) were used to determine MP size, concentration, cellular origin and annexin V positivity (reflecting phosphatidylserine exposure). Fatty acid analysis was performed by gas chromatography and MP miR expression profiles were compared by microarray. MAIN RESULTS AND THE ROLE OF CHANCE PCOS subjects showed increased MP concentrations compared with healthy volunteers (mean ± SD; 11.5 ± 5 × 10(12)/ml versus 10.0 ± 4 × 10(12)/ml, respectively; P = 0.03), which correlated with the homeostasis model of insulin resistance (r = 0.53, P = 0.03). This difference was predominantly seen in MPs whose size was in the small exosomal range (<150 nm in diameter, P< 0.05). PCOS patients showed a greater percentage of annexin V(+) MPs compared with healthy volunteers (84 ± 18 versus 74 ± 24%, respectively, P = 0.05) but the cellular origin of MPs, which were predominantly platelet-derived (PCOS: 99 ± 0.9%; controls: 99 ± 2.5%), did not differ. MP fatty acid concentration and composition was similar between groups but 16 miRs were differentially expressed (P < 0.05). LIMITATIONS, REASON FOR CAUTION Patients with PCOS were classified by the Rotterdam criteria, which describes a less severe metabolic phenotype than other definitions of the syndrome. Our findings may thus not be generalizable to all patients with PCOS. MicroRNA expression analysis was only undertaken in an exploratory subset of the overall study population hence, validation of our findings in a larger cohort is mandatory. Furthermore, miR levels were unaltered for the highly expressed miRs and it is unclear whether differences in the lowly expressed miRs carries pathological relevance. WIDER IMPLICATIONS OF THE FINDINGS This study suggests that women with PCOS have an altered MP profile but further studies are needed to confirm this, to explore the mechanisms by which these alterations develop and to establish whether therapies that improve insulin sensitivity are able to reduce circulating MP concentrations. STUDY FUNDING/COMPETING INTERESTS The study was funded by grants from the Wales Heart Research Institute and Mrs John Nixon Scholarship. The authors have no conflicts of interest to declare.
Scientific Reports | 2017
Daryn Robert Michael; Thomas S. Davies; Joe W. E. Moss; D. Lama Calvente; Dipak Purshottam Ramji; Julian Roberto Marchesi; Alexandros Pechlivanis; Sue Plummer; Timothy Hughes
Hypercholesterolaemia is a major risk factor for cardiovascular disease and it has been found that some probiotic bacteria possess cholesterol-lowering capabilities. In this study, the ability of the Lab4 probiotic consortium to hydrolyse bile salts, assimilate cholesterol and regulate cholesterol transport by polarised Caco-2 enterocytes was demonstrated. Furthermore, in wild-type C57BL/6J mice fed a high fat diet, 2-weeks supplementation with Lab4 probiotic consortium plus Lactobacillusplantarum CUL66 resulted in significant reductions in plasma total cholesterol levels and suppression of diet-induced weight gain. No changes in plasma levels of very low-density lipoprotein/low-density lipoprotein, high-density lipoprotein, triglycerides, cytokines or bile acids were observed. Increased amounts of total and unconjugated bile acids in the faeces of the probiotic-fed mice, together with modulation of hepatic small heterodimer partner and cholesterol-7α-hydroxylase mRNA expression, implicates bile salt hydrolase activity as a potential mechanism of action. In summary, this study demonstrates the cholesterol-lowering efficacy of short-term feeding of the Lab4 probiotic consortium plus L. plantarum CUL66 in wild-type mice and supports further assessment in human trials.
PLOS ONE | 2016
Joe W. E. Moss; Thomas S. Davies; Iveta Garaiova; Sue Plummer; Daryn Robert Michael; Dipak Purshottam Ramji
Introduction Atherosclerosis is the underlying cause of cardiovascular disease that leads to more global mortalities each year than any other ailment. Consumption of active food ingredients such as phytosterols, omega-3 polyunsaturated fatty acids and flavanols are known to impart beneficial effects on cardiovascular disease although the combined actions of such agents in atherosclerosis is poorly understood. The aim of this study was to screen a nutritional supplement containing each of these active components for its anti-atherosclerotic effect on macrophages in vitro. Results The supplement attenuated the expression of intercellular adhesion molecule-1 and macrophage chemoattractant protein-1 in human and murine macrophages at physiologically relevant doses. The migratory capacity of human monocytes was also hindered, possibly mediated by eicosapentaenoic acid and catechin, while the ability of foam cells to efflux cholesterol was improved. The polarisation of murine macrophages towards a pro-inflammatory phenotype was also attenuated by the supplement. Conclusion The formulation was able to hinder multiple key steps of atherosclerosis development in vitro by inhibiting monocyte recruitment, foam cell formation and macrophage polarisation towards an inflammatory phenotype. This is the first time a combination these ingredients has been shown to elicit such effects and supports its further study in preclinical in vivo models.
Scientific Reports | 2016
Rebecca Claire Salter; Pelagia Foka; Thomas S. Davies; Hayley Gallagher; Daryn Robert Michael; Timothy Gordon Ashlin; Dipak Purshottam Ramji
The anti-atherogenic cytokine TGF-β inhibits macrophage foam cell formation by suppressing the expression of key genes implicated in the uptake of modified lipoproteins. We have previously shown a critical role for p38 MAPK and JNK in the TGF-β-mediated regulation of apolipoprotein E expression in human monocytes. However, the roles of these two MAPK pathways in the control of expression of key genes involved in the uptake of modified lipoproteins in human macrophages is poorly understood and formed the focus of this study. TGF-β activated both p38 MAPK and JNK, and knockdown of p38 MAPK or c-Jun, a key downstream target of JNK action, demonstrated their requirement in the TGF-β-inhibited expression of several key genes implicated in macrophage lipoprotein uptake. The potential role of c-Jun and specific co-activators in the action of TGF-β was investigated further by studies on the lipoprotein lipase gene. c-Jun did not directly interact with the minimal promoter region containing the TGF-β response elements and a combination of transient transfection and knock down assays revealed an important role for SRC-1. These studies provide novel insights into the mechanisms underlying the TGF-β-mediated inhibition of macrophage gene expression associated with the control of cholesterol homeostasis.
Journal of Cellular Biochemistry | 2015
Etimad A. Huwait; Nishi N. Singh; Daryn Robert Michael; Thomas S. Davies; Joe W. E. Moss; Dipak Purshottam Ramji
The transcription of the ATP‐binding cassette transporter A1 (ABCA1) gene, which plays a key anti‐atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c‐Jun N‐terminal kinase (JNK) and phosphoinositide 3‐kinase (PI3K) in the LXRs‐mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have, therefore, investigated a potential role for PKC in the action of LXR/RXR agonist 22‐(R)‐hydroxycholesterol (22‐(R)‐HC)/9‐cis‐retinoic acid (9cRA) in THP‐1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein‐1 (AP‐1) DNA binding activity in macrophages treated with 22‐(R)‐HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype‐specific inhibitors. These studies, therefore, reveal a potentially important role for PKC in the action of 22‐(R)‐HC and 9cRA in human macrophages. J. Cell. Biochem. 116: 2032–2038, 2015.
The Cardiology | 2017
Hayley Gallagher; Joe W. E. Moss; John D. Williams; Thomas S. Davies; Wajdan Al-Ahmadi; Victoria O'Morain; Dipak Purshottam Ramji
Objectives: To investigate the effects of nutraceuticals on key processes associated with atherosclerosis in vitro and in vivo. Background: Atherosclerosis is an inflammatory disease of the vasculature in which macrophages play key roles at all stages and represent promising therapeutic targets. Unfortunately, current therapies against atherosclerosis are not fully effective and associated with other issues such as adverse side effects. In addition, there have been many failures on pharmaceutical agents identified from drug discovery programs. Nutraceuticals represent promising alternatives in the prevention and treatment of atherosclerosis but requires a thorough understanding of their actions together with the underlying mechanisms. The purpose of this study was to address this with emphasis on key macrophage processes associated with atherosclerosis. Methods: A combination of macrophage cell lines and primary cultures were used with gene expression analysed by atherosclerosis profiler arrays and real time quantitative PCR. Foam cell formation was investigated by following the uptake of fluorescently labeled modified LDL, intracellular lipid profiling and cholesterol efflux assays. Inflammasome activation was evaluated by following the release of interleukin (IL)-1beta using an ELISA and ROS production using a kit from Abcam. The effects in vivo were analysed in C57BL/6 mice fed a high fat diet. Results: The studies focused on polyphenols, flavanols and omega-6 polyunsaturated fatty acids. These either inhibited or had no effect on several key macrophage processes associated with atherosclerosis such as pro-inflammatory gene expression, the uptake of modified LDL, macropinocytosis, ROS production and the activation of the inflammasome. In addition, where analysed, the nutraceutical inhibited several atherosclerosis-associated markers in mice fed a high fat diet. The mechanisms underlying such actions will be presented. Conclusions: The studies provide new insights into the beneficial actions of nutraceuticals in atherosclerosis.
Archive | 2016
Thomas S. Davies; Hayley Gallagher; Joe W. E. Moss; F.B. Jaffar; Wajdan Al-Ahmadi; Ffion Harris; Dipak Purshottam Ramji
Objectives: To investigate the actions of nutraceuticals on key macrophage processes associated with atherosclerosis. Background: Atherosclerosis is an inflammatory disorder of the vasculature orchestrated by the action of cytokines. Macrophages play a pivotal role in atherosclerosis and represent promising therapeutic targets. Current therapies against atherosclerosis are associated with substantial residual risk together with other issues such as adverse side effects. In addition, there have been numerous disappointments on many pharmaceutical agents identified from drug discovery programs. This has initiated interest in nutraceuticals as preventative or therapeutic agents in atherosclerosis but requires an in-depth understanding of their actions. The purpose of this study was to delineate the effects of nutraceuticals on key macrophage processes associated with atherosclerosis together with the molecular mechanisms underlying their actions. Methods: The studies used a combination of macrophage cell lines and primary cultures. Gene expression was monitored by real time quantitative PCR and western blot analysis. The production of reactive oxygen species was determined using a kit from Abcam. Foam cell formation was monitored by uptake of fluorescently labeled modified LDL, intracellular lipid profile and cholesterol efflux. Inflammasome activation was evaluated by following the release of interleukin (IL)-1beta. Cell viability was assessed by release of lactate dehydrogenase. Results: The studies focused on key components in olive oil and omega-6 polyunsaturated fatty acids. These attenuated the expression of key markers of inflammation induced by several pro-atherogenic cytokines, the uptake of modified LDL, macropinocytosis and foam cell formation in macrophages. In addition, they stimulated macrophage cholesterol efflux. A differential effect was observed for other parameters such as production of reactive oxygen species and production of IL-1beta via inflammasome activation. The mechanisms underlying such actions will be presented. Conclusions: The studies provide novel insights into the actions of nutraceuticals on key macrophage pprocesses associated with atherosclerosisroces
The Cardiology | 2014
Thomas S. Davies; Na Li; James Edward McLaren; Timothy Hughes; Dipak Purshottam Ramji