Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas S. Whittam is active.

Publication


Featured researches published by Thomas S. Whittam.


Nature | 2000

Parallel evolution of virulence in pathogenic Escherichia coli

Sean D. Reid; Corinne J. Herbelin; Alyssa C. Bumbaugh; R K Selander; Thomas S. Whittam

The mechanisms underlying the evolution and emergence of new bacterial pathogens are not well understood. To elucidate the evolution of pathogenic Escherichia coli strains, here we sequenced seven housekeeping genes to build a phylogenetic tree and trace the history of the acquisition of virulence genes. Compatibility analysis indicates that more than 70% of the informative sites agree with a single phylogeny, suggesting that recombination has not completely obscured the remnants of ancestral chromosomes. On the basis of the rate of synonymous substitution for E. coli and Salmonella enterica (4.7 × 10-9 per site per year), the radiation of clones began about 9 million years ago and the highly virulent pathogen responsible for epidemics of food poisoning, E. coli O157:H7, separated from a common ancestor of E. coli K-12 as long as 4.5 million years ago. Phylogenetic analysis reveals that old lineages of E. coli have acquired the same virulence factors in parallel, including a pathogenicity island involved in intestinal adhesion, a plasmid-borne haemolysin, and phage-encoded Shiga toxins. Such parallel evolution indicates that natural selection has favoured an ordered acquisition of genes and the progressive build-up of molecular mechanisms that increase virulence.


Journal of Bacteriology | 2006

Global Phylogeny of Mycobacterium tuberculosis Based on Single Nucleotide Polymorphism (SNP) Analysis: Insights into Tuberculosis Evolution, Phylogenetic Accuracy of Other DNA Fingerprinting Systems, and Recommendations for a Minimal Standard SNP Set

Ingrid Filliol; Alifiya S. Motiwala; Magali Cavatore; Weihong Qi; Manzour Hernando Hazbón; Miriam Bobadilla del Valle; Janet Fyfe; Lourdes García-García; Nalin Rastogi; Christophe Sola; Thierry Zozio; Marta Inírida Guerrero; Clara Inés León; Jonathan Crabtree; Sam Angiuoli; Kathleen D. Eisenach; Riza Durmaz; Moses Joloba; Adrian Rendon; José Sifuentes-Osornio; Alfredo Ponce de León; M. Donald Cave; Robert D. Fleischmann; Thomas S. Whittam; David Alland

We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks

Shannon D. Manning; Alifiya S. Motiwala; A. Cody Springman; Weihong Qi; David W. Lacher; Lindsey Ouellette; Janice M. Mladonicky; Patricia Somsel; James T. Rudrik; Stephen E. Dietrich; Wei Zhang; Bala Swaminathan; David Alland; Thomas S. Whittam

Escherichia coli O157:H7, a toxin-producing food and waterborne bacterial pathogen, has been linked to large outbreaks of gastrointestinal illness for more than two decades. E. coli O157 causes a wide range of clinical illness that varies by outbreak, although factors that contribute to variation in disease severity are poorly understood. Several recent outbreaks involving O157 contamination of fresh produce (e.g., spinach) were associated with more severe disease, as defined by higher hemolytic uremic syndrome and hospitalization frequencies, suggesting that increased virulence has evolved. To test this hypothesis, we developed a system that detects SNPs in 96 loci and applied it to >500 E. coli O157 clinical strains. Phylogenetic analyses identified 39 SNP genotypes that differ at 20% of SNP loci and are separated into nine distinct clades. Differences were observed between clades in the frequency and distribution of Shiga toxin genes and in the type of clinical disease reported. Patients with hemolytic uremic syndrome were significantly more likely to be infected with clade 8 strains, which have increased in frequency over the past 5 years. Genome sequencing of a spinach outbreak strain, a member of clade 8, also revealed substantial genomic differences. These findings suggest that an emergent subpopulation of the clade 8 lineage has acquired critical factors that contribute to more severe disease. The ability to detect and rapidly genotype O157 strains belonging to such lineages is important and will have a significant impact on both disease diagnosis and treatment guidelines.


The Journal of Infectious Diseases | 1998

Genotypic and Phenotypic Changes in the Emergence of Escherichia coli O157:H7

Peter Feng; Keith A. Lampel; Helge Karch; Thomas S. Whittam

Escherichia coli O157:H7 is a foodborne pathogen distinguished from typical E. coli by the production of Shiga toxins (Stx) and the inability to ferment sorbitol (SOR) and to express beta-glucuronidase (GUD) activity. An allele-specific probe for the GUD gene (uidA) and multilocus enzyme electrophoresis were used to elucidate stages in the evolutionary emergence of E. coli O157: H7. A point mutation at +92 in uidA was found only in O157:H7 and its nonmotile relatives, including a SOR+ O157:H clone implicated in outbreaks of hemolytic-uremic syndrome in Germany. The results support a model in which O157:H7 evolved sequentially from an O55:H7 ancestor, first by acquiring the Stx2 gene and then by diverging into two branches; one became GUD- SOR- , resulting in the O157:H7 clone that spread worldwide, and the other lost motility, leading to the O157:H clone that is an increasing public health problem in Europe.


Journal of Clinical Investigation | 2001

Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli

Michael S. Donnenberg; Thomas S. Whittam

Escherichia coli, a venerable workhorse for biochemical and genetic studies and for the large-scale production of recombinant proteins, is one of the most intensively studied of all organisms. The natural habitat of E. coli is the gastrointestinal tract of warm-blooded animals, and in humans, this species is the most common facultative anaerobe in the gut. Although most strains exist as harmless symbionts, there are many pathogenic E. coli strains that can cause a variety of diseases in animals and humans. In addition, from an evolutionary perspective, strains of the genus Shigella are so closely related phylogenetically that they are included in the group of organisms recognized as E. coli (1, 2). Pathogenic E. coli strains differ from those that predominate in the enteric flora of healthy individuals in that they are more likely to express virulence factors — molecules directly involved in pathogenesis but ancillary to normal metabolic functions. Expression of these virulence factors disrupts the normal host physiology and elicits disease. In addition to their role in disease processes, virulence factors presumably enable the pathogens to exploit their hosts in ways unavailable to commensal strains, and thus to spread and persist in the bacterial community. It is a mistake to think of E. coli as a homogenous species. Most genes, even those encoding conserved metabolic functions, are polymorphic, with multiple alleles found among different isolates (1). The composition of the genome of E. coli is also highly dynamic. The fully sequenced genome of the laboratory K-12 strain, whose derivatives have served an indispensable role in the laboratories of countless scientists, shows evidence of tremendous plasticity (3). It has been estimated that the K-12 lineage has experienced more than 200 lateral transfer events since it diverged from Salmonella about 100 million years ago and that 18% of its contemporary genes were obtained horizontally from other species (4). Such fluid gain and loss of genetic material are also seen in the recent comparison of the genomic sequence of a pathogenic E. coli O157:H7 with the K-12 genome. Approximately 4.1 million base pairs of “backbone” sequences are conserved between the genomes, but these stretches are punctuated by hundreds of sequences present in one strain but not in the other. The pathogenic strain contains 1.34 million base pairs of lineage-specific DNA that includes 1,387 new genes; some of these have been implicated in virulence, but many have no known function (5). The virulence factors that distinguish the various E. coli pathotypes were acquired from numerous sources, including plasmids, bacteriophages, and the genomes of other bacteria. Pathogenicity islands, relatively large (>10 kb) genetic elements that encode virulence factors and are found specifically in the genomes of pathogenic strains, frequently have base compositions that differ drastically from that of the content of the rest of the E. coli genome, indicating that they were acquired from another species. Here, we explore some of the known virulence factors that contribute to the heterogeneity of E. coli strains, and we review what is known regarding the origin and distribution of these factors.


Journal of Bacteriology | 2005

Evolution of Genomic Content in the Stepwise Emergence of Escherichia coli O157:H7

Lukas M. Wick; Weihong Qi; David W. Lacher; Thomas S. Whittam

Genome comparisons have demonstrated that dramatic genetic change often underlies the emergence of new bacterial pathogens. Evolutionary analysis of Escherichia coli O157:H7, a pathogen that has emerged as a worldwide public health threat in the past two decades, has posited that this toxin-producing pathogen evolved in a series of steps from O55:H7, a recent ancestor of a nontoxigenic pathogenic clone associated with infantile diarrhea. We used comparative genomic hybridization with 50-mer oligonucleotide microarrays containing probes from both pathogenic and nonpathogenic genomes to infer when genes were acquired and lost. Many ancillary virulence genes identified in the O157 genome were already present in an O55:H7-like progenitor, with 27 of 33 genomic islands of >5 kb and specific for O157:H7 (O islands) that were acquired intact before the split from this immediate ancestor. Most (85%) of variably absent or present genes are part of prophages or phage-like elements. Divergence in gene content among these closely related strains was approximately 140 times greater than divergence at the nucleotide sequence level. A >100-kb region around the O-antigen gene cluster contained highly divergent sequences and also appears to be duplicated in its entirety in one lineage, suggesting that the whole region was cotransferred in the antigenic shift from O55 to O157. The beta-glucuronidase-positive O157 variants, although phylogenetically closest to the Sakai strain, were divergent for multiple adherence factors. These observations suggest that, in addition to gains and losses of phage elements, O157:H7 genomes are rapidly diverging and radiating into new niches as the pathogen disseminates.


Microbiology | 1983

Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella

Howard Ochman; Thomas S. Whittam; D A Caugant; Robert K. Selander

Electrophoretically demonstrable variation in 12 enzymes was studied in more than 1 600 isolates of Escherichia coli from human and animal sources and in 123 strains of the four species of Shigella. All 12 enzymes were polymorphic; and the number of allozymes (mobility variants), which were equated with alleles, averaged 9.3 per locus in E. coli. For Shigella species, the mean number of alleles was 2.9 per locus. Some 77% of the allozymes recorded in Shigella were shared with E. coli. A total of 302 unique genotypic combinations of alleles over the 12 loci (electrophoretic types, ETs) was distinguished, of which 279 represented E. coli and 23 were Shigella. Among electrophoretic types, mean allelic diversity per locus was 0.52 for E. coli and 0.29 for Shigella. It was estimated that there are, on the average, about 0.3 detectable codon differences per locus between pairs of strains of E. coli and Shigella, which is roughly equivalent to 1.2 amino acid differences per enzyme. Evidence that the enzyme loci studied are a random sample of the genome is provided by a significant positive correlation between estimates of genetic divergence between pairs of strains obtained by DNA reassociation tests and estimates of genetic distance between the same strains based on electrophoresis. A principal components analysis of allozyme profiles revealed that the 302 ETs fall into three overlapping clusters, reflecting strong non-random associations of alleles, largely at four loci. Each of the four ETs of E. coli that have been most frequently recovered from natural populations has an allozyme profile that is very similar to, or identical with, the hypothetical modal ET of one of the groups. ETs of Shigella fall into two of the groups. No biological significance can at present bbe attributed to the genetic structure revealed by Multilocus electrophoretic techniques. The electrophoretic data are fully compatible with other molecular and more conventional evidence of a close affinity between E. coli and Shigella, and they raise questions regarding the present assignments of certain strains to species. In support of evidence from DNA reassociation tests and serotyping, the present study suggests that S. sonnei is homogeneous in chromosomal genotype.


Applied and Environmental Microbiology | 2009

Cryptic Lineages of the Genus Escherichia

Seth T. Walk; Elizabeth W. Alm; David M. Gordon; Jeffrey L. Ram; Gary A. Toranzos; James M. Tiedje; Thomas S. Whittam

ABSTRACT Extended multilocus sequence typing (MLST) analysis of atypical Escherichia isolates was used to identify five novel phylogenetic clades (CI to CV) among isolates from environmental, human, and animal sources. Analysis of individual housekeeping loci showed that E. coli and its sister clade, CI, remain largely indistinguishable and represent nascent evolutionary lineages. Conversely, clades of similar age (CIII and CIV) were found to be phylogenetically distinct. When all Escherichia lineages (named and unnamed) were evaluated, we found evidence that Escherichia fergusonii has evolved at an accelerated rate compared to E. coli, CI, CIII, CIV, and CV, suggesting that this species is younger than estimated by the molecular clock method. Although the five novel clades were phylogenetically distinct, we were unable to identify a discriminating biochemical marker for all but one of them (CIII) with traditional phenotypic profiling. CIII had a statistically different phenotype from E. coli that resulted from the loss of sucrose and sorbitol fermentation and lysine utilization. The lack of phenotypic distinction has likely hindered the ability to differentiate these clades from typical E. coli, and so their ecological significance and importance for applied and clinical microbiology are yet to be determined. However, our sampling suggests that CIII, CIV, and CV represent environmentally adapted Escherichia lineages that may be more abundant outside the host gastrointestinal tract.


Journal of Bacteriology | 2005

Evolutionary Genetics of a New Pathogenic Escherichia Species: Escherichia albertii and Related Shigella boydii Strains

Katie E. Hyma; David W. Lacher; Adam M. Nelson; Alyssa C. Bumbaugh; J. Michael Janda; Nancy A. Strockbine; Vincent B. Young; Thomas S. Whittam

A bacterium originally described as Hafnia alvei induces diarrhea in rabbits and causes epithelial damage similar to the attachment and effacement associated with enteropathogenic Escherichia coli. Subsequent studies identified similar H. alvei-like strains that are positive for an intimin gene (eae) probe and, based on DNA relatedness, are classified as a distinct Escherichia species, Escherichia albertii. We determined sequences for multiple housekeeping genes in five E. albertii strains and compared these sequences to those of strains representing the major groups of pathogenic E. coli and Shigella. A comparison of 2,484 codon positions in 14 genes revealed that E. albertii strains differ, on average, at approximately 7.4% of the nucleotide sites from pathogenic E. coli strains and at 15.7% from Salmonella enterica serotype Typhimurium. Interestingly, E. albertii strains were found to be closely related to strains of Shigella boydii serotype 13 (Shigella B13), a distant relative of E. coli representing a divergent lineage in the genus Escherichia. Analysis of homologues of intimin (eae) revealed that the central conserved domains are similar in E. albertii and Shigella B13 and distinct from those of eae variants found in pathogenic E. coli. Sequence analysis of the cytolethal distending toxin gene cluster (cdt) also disclosed three allelic groups corresponding to E. albertii, Shigella B13, and a nontypeable isolate serologically related to S. boydii serotype 7. Based on the synonymous substitution rate, the E. albertii-Shigella B13 lineage is estimated to have split from an E. coli-like ancestor approximately 28 million years ago and formed a distinct evolutionary branch of enteric pathogens that has radiated into groups with distinct virulence properties.


The Journal of Infectious Diseases | 1997

Genetic and Phenotypic Analysis of Escherichia coli with Enteropathogenic Characteristics Isolated from Seattle Children

Theresa N. Bokete; Thomas S. Whittam; Richard A. Wilson; Carla R. Clausen; Cliff M. O'Callahan; Steve L. Moseley; Thomas R. Fritsche; Phillip I. Tarr

Coliform colonies from children whose stools were submitted for microbiologic analysis were studied prospectively to determine the frequency of shedding of enteropathogenic Escherichia coli (EPEC). In total, 2225 isolates from 445 patients were probed with eaeA (encoding intimin) and the EAF (EPEC adherence factor) probe, and adherence and actin-aggregating phenotypes were determined. Twenty-five patients (5.6%) shed non-O157:H7 eaeA+ EAF- E. coli. Of these 25 patients, isolates from 5 produced Shiga toxins and from 3 possessed bfpA (encoding the bundle-forming pilus) sequences. Non-O157:H7 eaeA+ E. coli from 21 (84%) of 25 patients adhered locally to and aggregated actin in HeLa cells. Four patients shed nonadherent EAF+ eaeA- E. coli. Non-O157:H7 eaeA+ and EAF- isolates belonged to diverse electrophoretic types and classical and nonclassical enteropathogenic serotypes. EPEC are relatively common in stools submitted for analysis in this North American pediatric hospital. Their etiologic role in childhood diarrhea warrants elucidation.

Collaboration


Dive into the Thomas S. Whittam's collaboration.

Top Co-Authors

Avatar

David W. Lacher

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth T. Walk

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Dele Davies

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Peter Feng

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge