Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Lacher is active.

Publication


Featured researches published by David W. Lacher.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks

Shannon D. Manning; Alifiya S. Motiwala; A. Cody Springman; Weihong Qi; David W. Lacher; Lindsey Ouellette; Janice M. Mladonicky; Patricia Somsel; James T. Rudrik; Stephen E. Dietrich; Wei Zhang; Bala Swaminathan; David Alland; Thomas S. Whittam

Escherichia coli O157:H7, a toxin-producing food and waterborne bacterial pathogen, has been linked to large outbreaks of gastrointestinal illness for more than two decades. E. coli O157 causes a wide range of clinical illness that varies by outbreak, although factors that contribute to variation in disease severity are poorly understood. Several recent outbreaks involving O157 contamination of fresh produce (e.g., spinach) were associated with more severe disease, as defined by higher hemolytic uremic syndrome and hospitalization frequencies, suggesting that increased virulence has evolved. To test this hypothesis, we developed a system that detects SNPs in 96 loci and applied it to >500 E. coli O157 clinical strains. Phylogenetic analyses identified 39 SNP genotypes that differ at 20% of SNP loci and are separated into nine distinct clades. Differences were observed between clades in the frequency and distribution of Shiga toxin genes and in the type of clinical disease reported. Patients with hemolytic uremic syndrome were significantly more likely to be infected with clade 8 strains, which have increased in frequency over the past 5 years. Genome sequencing of a spinach outbreak strain, a member of clade 8, also revealed substantial genomic differences. These findings suggest that an emergent subpopulation of the clade 8 lineage has acquired critical factors that contribute to more severe disease. The ability to detect and rapidly genotype O157 strains belonging to such lineages is important and will have a significant impact on both disease diagnosis and treatment guidelines.


Journal of Bacteriology | 2005

Evolution of Genomic Content in the Stepwise Emergence of Escherichia coli O157:H7

Lukas M. Wick; Weihong Qi; David W. Lacher; Thomas S. Whittam

Genome comparisons have demonstrated that dramatic genetic change often underlies the emergence of new bacterial pathogens. Evolutionary analysis of Escherichia coli O157:H7, a pathogen that has emerged as a worldwide public health threat in the past two decades, has posited that this toxin-producing pathogen evolved in a series of steps from O55:H7, a recent ancestor of a nontoxigenic pathogenic clone associated with infantile diarrhea. We used comparative genomic hybridization with 50-mer oligonucleotide microarrays containing probes from both pathogenic and nonpathogenic genomes to infer when genes were acquired and lost. Many ancillary virulence genes identified in the O157 genome were already present in an O55:H7-like progenitor, with 27 of 33 genomic islands of >5 kb and specific for O157:H7 (O islands) that were acquired intact before the split from this immediate ancestor. Most (85%) of variably absent or present genes are part of prophages or phage-like elements. Divergence in gene content among these closely related strains was approximately 140 times greater than divergence at the nucleotide sequence level. A >100-kb region around the O-antigen gene cluster contained highly divergent sequences and also appears to be duplicated in its entirety in one lineage, suggesting that the whole region was cotransferred in the antigenic shift from O55 to O157. The beta-glucuronidase-positive O157 variants, although phylogenetically closest to the Sakai strain, were divergent for multiple adherence factors. These observations suggest that, in addition to gains and losses of phage elements, O157:H7 genomes are rapidly diverging and radiating into new niches as the pathogen disseminates.


Journal of Bacteriology | 2005

Evolutionary Genetics of a New Pathogenic Escherichia Species: Escherichia albertii and Related Shigella boydii Strains

Katie E. Hyma; David W. Lacher; Adam M. Nelson; Alyssa C. Bumbaugh; J. Michael Janda; Nancy A. Strockbine; Vincent B. Young; Thomas S. Whittam

A bacterium originally described as Hafnia alvei induces diarrhea in rabbits and causes epithelial damage similar to the attachment and effacement associated with enteropathogenic Escherichia coli. Subsequent studies identified similar H. alvei-like strains that are positive for an intimin gene (eae) probe and, based on DNA relatedness, are classified as a distinct Escherichia species, Escherichia albertii. We determined sequences for multiple housekeeping genes in five E. albertii strains and compared these sequences to those of strains representing the major groups of pathogenic E. coli and Shigella. A comparison of 2,484 codon positions in 14 genes revealed that E. albertii strains differ, on average, at approximately 7.4% of the nucleotide sites from pathogenic E. coli strains and at 15.7% from Salmonella enterica serotype Typhimurium. Interestingly, E. albertii strains were found to be closely related to strains of Shigella boydii serotype 13 (Shigella B13), a distant relative of E. coli representing a divergent lineage in the genus Escherichia. Analysis of homologues of intimin (eae) revealed that the central conserved domains are similar in E. albertii and Shigella B13 and distinct from those of eae variants found in pathogenic E. coli. Sequence analysis of the cytolethal distending toxin gene cluster (cdt) also disclosed three allelic groups corresponding to E. albertii, Shigella B13, and a nontypeable isolate serologically related to S. boydii serotype 7. Based on the synonymous substitution rate, the E. albertii-Shigella B13 lineage is estimated to have split from an E. coli-like ancestor approximately 28 million years ago and formed a distinct evolutionary branch of enteric pathogens that has radiated into groups with distinct virulence properties.


Journal of Bacteriology | 2007

Molecular evolution of typical enteropathogenic Escherichia coli: clonal analysis by multilocus sequence typing and virulence gene allelic profiling.

David W. Lacher; Hans Steinsland; T. Eric Blank; Michael S. Donnenberg; Thomas S. Whittam

Enteropathogenic Escherichia coli (EPEC) infections are a leading cause of infantile diarrhea in developing nations. Typical EPEC isolates are differentiated from other types of pathogenic E. coli by two distinctive phenotypes, attaching effacement and localized adherence. The genes specifying these phenotypes are found on the locus of enterocyte effacement (LEE) and the EPEC adherence factor (EAF) plasmid. To describe how typical EPEC has evolved, we characterized a diverse collection of strains by multilocus sequence typing (MLST) and performed restriction fragment length polymorphism (RFLP) analysis of three virulence genes (eae, bfpA, and perA) to assess allelic variation. Among 129 strains representing 20 O-serogroups, 21 clonal genotypes were identified using MLST. RFLP analysis resolved nine eae, nine bfpA, and four perA alleles. Each bfpA allele was associated with only one perA allele class, suggesting that recombination has not played a large role in shuffling the bfpA and perA loci between separate EAF plasmids. The distribution of eae alleles among typical EPEC strains is more concordant with the clonal relationships than the distribution of the EAF plasmid types. These results provide further support for the hypothesis that the EPEC pathotype has evolved multiple times within E. coli through separate acquisitions of the LEE island and EAF plasmid.


Infection and Immunity | 2002

Molecular Characterization of a Serotype O121:H19 Clone, a Distinct Shiga Toxin-Producing Clone of Pathogenic Escherichia coli

Cheryl L. Tarr; Teresa M. Large; Chris L. Moeller; David W. Lacher; Phillip I. Tarr; David W. K. Acheson; Thomas S. Whittam

ABSTRACT Most illnesses caused by Shiga toxin-producing Escherichia coli (STEC) have been attributed to E. coli serotype O157:H7, but non-O157 STEC infections are now increasingly recognized as public health problems worldwide. The O121:H19 serotype is being isolated more frequently from clinical specimens and has been implicated in one waterborne outbreak. We used multilocus virulence gene profiling, a PCR-based assay, to characterize the virulence gene content of 24 isolates of serotype O121:H19 and nonmotile variants. We also performed multilocus enzyme electrophoresis and multilocus sequencing to establish the clonal relatedness of O121 isolates and to elucidate the relationship of O121 to common STEC clones. The 24 isolates were found to represent a single bacterial clone, as there was no allelic variation across 18 enzyme loci among the isolates. The complete nucleotide sequence of the intimin gene differed by four substitutions from that of the epsilon (Int-ε) allele of O103:H2 strain PMK5. The typical O121 virulence gene profile was similar to the profiles of enterohemorrhagic E. coli (EHEC) clones of E. coli: it included a Shiga toxin 2 gene (stx2), two genes on the EHEC plasmid (toxB and ehxA), and the gene encoding intimin (eae). Despite the similarities, putative virulence genes distributed on O islands—large chromosomal DNA segments present in the O157:H7 genome—were useful for discriminating among STEC serotypes and the O121:H19 clone had a composite profile that was distinct from the profiles of the other major EHEC clones of pathogenic E. coli. On the basis of sequencing analysis with 13 housekeeping genes, the O121:H19 clone did not fall into any of the four classical EHEC and enteropathogenic E. coli groups but instead was closely related to two eae-negative STEC strains.


Emerging Infectious Diseases | 2007

Genetic Diversity among Clonal Lineages within Escherichia coli O157:H7 Stepwise Evolutionary Model

Peter Feng; Steven R. Monday; David W. Lacher; Lesley Allison; Anja Siitonen; Christine E. Keys; Marjut Eklund; Hideki Nagano; Helge Karch; James E. Keen; Thomas S. Whittam

Molecular characterization and subtyping show genetic diversities within clonal complexes.


Journal of Clinical Microbiology | 2007

Role of Large Sequence Polymorphisms (LSPs) in Generating Genomic Diversity among Clinical Isolates of Mycobacterium tuberculosis and the Utility of LSPs in Phylogenetic Analysis

David Alland; David W. Lacher; Manzour Hernando Hazbón; Alifiya S. Motiwala; Weihong Qi; Robert D. Fleischmann; Thomas S. Whittam

ABSTRACT Mycobacterium tuberculosis strains contain different genomic insertions or deletions called large sequence polymorphisms (LSPs). Distinguishing between LSPs that occur one time versus ones that occur repeatedly in a genomic region may provide insights into the biological roles of LSPs and identify useful phylogenetic markers. We analyzed 163 clinical M. tuberculosis isolates for 17 LSPs identified in a genomic comparison of M. tuberculosis strains H37Rv and CDC1551. LSPs were mapped onto a single-nucleotide polymorphism (SNP)-based phylogenetic tree created using nine novel SNP markers that were found to reproduce a 212-SNP-based phylogeny. Four LSPs (group A) mapped to a single SNP tree segment. Two LSPs (group B) and 11 LSPs (group C) were inferred to have arisen independently in the same genomic region either two or more than two times, respectively. None of the group A LSPs but one group B LSP and five group C LSPs were flanked by IS6110 sequences in the references strains. Genes encoding members of the proline-glutamic acid or proline-proline-glutamic acid protein families were present only in group B or C LSPs. SNP- versus LSP-based phylogenies were also compared. We classified each isolate into 58 LSP types by using a separate LSP-based phylogenetic analysis and mapped the LSP types onto the SNP tree. LSPs often assigned isolates to the correct phylogenetic lineage; however, significant mistakes occurred for 6/58 (10%) of the LSP types. In conclusion, most LSPs occur in genomic regions that are prone to repeated insertion/deletion events and were responsible for an unexpectedly high degree of genomic variation in clinical M. tuberculosis. Group B and C LSPs may represent polymorphisms that occur due to selective pressure and affect the phenotype of the organism, while group A LSPs are preferable phylogenetic markers.


Journal of Clinical Microbiology | 2010

Ancestral Lineages of Human Enterotoxigenic Escherichia coli

Hans Steinsland; David W. Lacher; Halvor Sommerfelt; Thomas S. Whittam

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea among children living in and among travelers visiting developing countries. Human ETEC strains represent an epidemiologically and phenotypically diverse group of pathogens, and there is a need to identify natural groupings of these organisms that may help to explain this diversity. Here, we sought to identify most of the important human ETEC lineages that exist in the E. coli population, because strains that originate from the same lineage may also have inherited many of the same epidemiological and phenotypic traits. We performed multilocus sequence typing (MLST) on 1,019 ETEC isolates obtained from humans in different countries and analyzed the data against a backdrop of MLST data from 1,250 non-ETEC E. coli and eight ETEC isolates from pigs. A total of 42 different lineages were identified, 15 of which, representing 792 (78%) of the strains, were estimated to have emerged >900 years ago. Twenty of the lineages were represented in more than one country. There was evidence of extensive exchange of enterotoxin and colonization factor genes between different lineages. Human and porcine ETEC have probably emerged from the same ancestral ETEC lineage on at least three occasions. Our findings suggest that most ETEC strains circulating in the human population today originate from well-established, globally widespread ETEC lineages. Some of the more important lineages identified here may represent a smaller and more manageable target for the ongoing efforts to develop effective ETEC vaccines.


Emerging Infectious Diseases | 2003

Enteropathogenic Escherichia coli O157 strains from Brazil.

T. Eric Blank; David W. Lacher; Isabel C. A. Scaletsky; Hailang Zhong; Thomas S. Whittam; Michael S. Donnenberg

We describe two serogroup O157 Escherichia coli strains from Brazilian infants with diarrhea. A variety of assays indicate that these strains belong to the enteropathogenic, not the enterohemorrhagic, pathotype. These strains possess a novel bfpA allele encoding the type IV pilin characteristic of typical enteropathogenic E. coli strains. Our results emphasize the pitfalls of classifying pathogenic E. coli by serogroup.


Journal of Clinical Microbiology | 2005

DNA Polymorphism and Molecular Subtyping of the Capsular Gene Cluster of Group B Streptococcus

Shannon D. Manning; David W. Lacher; H. Dele Davies; Betsy Foxman; Thomas S. Whittam

ABSTRACT Serotyping and other phenotypic methods are often used to characterize the capsular polysaccharide of group B streptococci (GBS). We describe a capsular genotyping method that utilizes PCR of capsular polysaccharide synthesis genes (cps) and restriction enzyme digestion. This method facilitates the detection of DNA polymorphism in cps genes and correlates well with serotyping.

Collaboration


Dive into the David W. Lacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Feng

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Elkins

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Jayanthi Gangiredla

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Keith A. Lampel

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Mark K. Mammel

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Isha R. Patel

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Lothar Beutin

Federal Institute for Risk Assessment

View shared research outputs
Researchain Logo
Decentralizing Knowledge