Thomas W. Owens
Wellcome Trust Centre for Cell-Matrix Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas W. Owens.
Molecular Cell | 2013
Barbara Schellenberg; Pengbo Wang; James A. Keeble; Ricardo Rodriguez-Enriquez; Scott Walker; Thomas W. Owens; Fiona M Foster; Jolanta Tanianis-Hughes; Keith Brennan; Charles H. Streuli; Andrew P. Gilmore
Summary The proapoptotic Bcl-2 protein Bax is predominantly found in the cytosol of nonapoptotic cells and is commonly thought to translocate to mitochondria following an apoptotic stimulus. The current model for Bax activation is that BH3 proteins bind to cytosolic Bax, initiating mitochondrial targeting and outer-membrane permeabilization. Here, we challenge this and show that Bax is constitutively targeted to mitochondria but in nonapoptotic cells is constantly translocated back to the cytosol. Using live-cell spinning-disk confocal imaging with a combination of FLIP, FRAP, and photoactivatable GFP-Bax, we demonstrate that disrupting adhesion-dependent survival signals slows the rate of Bax’s dissociation from mitochondria, leading to its accumulation on the outer mitochondrial membrane. The overall accumulation of mitochondrial Bax following loss of survival signaling sensitizes cells to proapoptotic BH3 proteins. Our findings show that Bax is normally in a dynamic equilibrium between cytosol and mitochondria, enabling fluctuations in survival signals to finely adjust apoptotic sensitivity.
Breast Cancer Research | 2009
Fiona M Foster; Thomas W. Owens; Jolanta Tanianis-Hughes; Robert B. Clarke; Keith Brennan; N.J. Bundred; Charles H. Streuli
IntroductionInhibitor of apoptosis (IAPs) proteins are a family of proteins that can block apoptosis in normal cells and have been suggested to cause resistance to apoptosis in cancer. Overexpression of oncogenic receptor tyrosine kinases is common in breast cancer; in particular 20% of all cases show elevated Her2. Despite clinical success with the use of targeted therapies, such as Trastuzumab, only up to 35% of Her2-positive patients initially respond. We reasoned that IAP-mediated apoptosis resistance might contribute to this insensitivity to receptor tyrosine kinase therapy, in particular ErbB antagonists. Here we examine the levels of IAPs in breast cancer and evaluate whether targeting IAPs can enhance apoptosis in response to growth factor receptor antagonists and TRAIL.MethodsIAP levels were examined in a breast cancer cell line panel and in patient samples. IAPs were inhibited using siRNA or cell permeable mimetics of endogenous inhibitors. Cells were then exposed to TRAIL, Trastuzumab, Lapatinib, or Gefitinib for 48 hours. Examining nuclear morphology and staining for cleaved caspase 3 was used to score apoptosis. Proliferation was examined by Ki67 staining.ResultsFour members of the IAP family, Survivin, XIAP, cIAP1 and cIAP2, were all expressed to varying extents in breast cancer cell lines or tumours. MDAMB468, BT474 and BT20 cells all expressed XIAP to varying extents. Depleting the cells of XIAP overcame the intrinsic resistance of BT20 and MDAMB468 cells to TRAIL. Moreover, siRNA-based depletion of XIAP or use of a Smac mimetic to target multiple IAPs increased apoptosis in response to the ErbB antagonists, Trastuzumab, Lapatinib or Gefitinib in Her2-overexpressing BT474 cells, or Gefitinib in EGFR-overexpressing MDAMB468 cells.ConclusionsThe novel findings of this study are that multiple IAPs are concomitantly expressed in breast cancers, and that, in combination with clinically relevant Her2 treatments, IAP antagonists promote apoptosis and reduce the cell turnover index of breast cancers. We also show that combination therapy of IAP antagonists with some pro-apoptotic agents (for example, TRAIL) enhances apoptosis of breast cancer cells. In some cases (for example, MDAMB468 cells), the enhanced apoptosis is profound.
Cell Death & Differentiation | 2009
Thomas W. Owens; Anthony J. Valentijn; John-Paul Upton; James A. Keeble; Lu Zhang; Jennefer Lindsay; N. K. Zouq; Andrew P. Gilmore
Most cells undergo apoptosis through the intrinsic pathway. This is dependent on mitochondrial outer membrane permeabilisation (MOMP), which is mediated by the pro-apoptotic Bcl-2 family proteins, Bax and Bak. During apoptosis, Bax translocates from the cytosol to the outer mitochondrial membrane (OMM), wherein it contributes to the formation of pores to release cytochrome-c. However, it remains unclear whether Bax translocation is sufficient to bring about MOMP or whether Bax requires further signals on the OMM to be fully activated. We have previously shown that during mammary epithelial cell anoikis, Bax translocation does not commit cells to MOMP and detached cells are rescued if survival signals from the extracellular matrix (ECM) are restored. These findings implied that a second signal is required for mitochondrial Bax to fully activate and cause MOMP. We now identify p38MAPK (mitogen-activated protein kinase) as this necessary signal to activate Bax after its translocation to mitochondria. The inhibition of p38MAPK did not prevent Bax translocation, but its activity was required for mitochondrial Bax to bring about MOMP. p38MAPK was activated and recruited to a high molecular weight mitochondrial complex after loss of ECM attachment. Artificially targeting p38MAPK to the OMM increased the kinetics of anoikis, supporting a requirement for its mitochondrial localisation to regulate Bax activation and drive commitment to apoptosis.
Frontiers in Physiology | 2013
Thomas W. Owens; Matthew J. Naylor
Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarize what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.
Current Opinion in Cell Biology | 2009
Andrew P. Gilmore; Thomas W. Owens; Fiona M Foster; Jennefer Lindsay
A fundamental aspect in metazoans is the ability of a cell to recognise its positional context within a tissue. This is important in both development and homeostasis, where cell proliferation, differentiation and apoptosis are strictly controlled to form and maintain tissues. Much information has been generated on how cells receive and interpret adhesion-mediated signals. The non-receptor tyrosine kinase, Fak (focal adhesion kinase) has received much attention with regard to adhesion mediated signalling, including its role in survival. Survival signals are required to suppress the default pathway of apoptosis. The ultimate outcome of apoptotic signalling is the release of factors from the mitochondria into the cytosol. How the defined signalling pathways that control apoptosis converge on the mitochondria is an area with many unresolved questions.
Development | 2012
Giovanna M. Collu; Ana Hidalgo-Sastre; Ahmet Acar; Laura Bayston; Clara Gildea; Michael K. Leverentz; Christopher G. Mills; Thomas W. Owens; Olivier Meurette; Karel Dorey; Keith Brennan
Notch and Wnt are highly conserved signalling pathways that are used repeatedly throughout animal development to generate a diverse array of cell types. However, they often have opposing effects on cell-fate decisions with each pathway promoting an alternate outcome. Commonly, a cell receiving both signals exhibits only Wnt pathway activity. This suggests that Wnt inhibits Notch activity to promote a Wnt-ON/Notch-OFF output; but what might underpin this Notch regulation is not understood. Here, we show that Wnt acts via Dishevelled to inhibit Notch signalling, and that this crosstalk regulates cell-fate specification in vivo during Xenopus development. Mechanistically, Dishevelled binds and directly inhibits CSL transcription factors downstream of Notch receptors, reducing their activity. Furthermore, our data suggest that this crosstalk mechanism is conserved between vertebrate and invertebrate homologues. Thus, we identify a dual function for Dishevelled as an inhibitor of Notch signalling and an activator of the Wnt pathway that sharpens the distinction between opposing Wnt and Notch responses, allowing for robust cell-fate decisions.
Cancer Research | 2014
Thomas W. Owens; Renee L. Rogers; Sarah A. Best; Anita Ledger; Anne Marie Mooney; Alison Ferguson; Paul Shore; Alexander Swarbrick; Christopher J. Ormandy; Peter T. Simpson; Jason S. Carroll; Jane E. Visvader; Matthew J. Naylor
Regulators of differentiated cell fate can offer targets for managing cancer development and progression. Here, we identify Runx2 as a new regulator of epithelial cell fate in mammary gland development and breast cancer. Runx2 is expressed in the epithelium of pregnant mice in a strict temporally and hormonally regulated manner. During pregnancy, Runx2 genetic deletion impaired alveolar differentiation in a manner that disrupted alveolar progenitor cell populations. Conversely, exogenous transgenic expression of Runx2 in mammary epithelial cells blocked milk production, suggesting that the decrease in endogenous Runx2 observed late in pregnancy is necessary for full differentiation. In addition, overexpression of Runx2 drove epithelial-to-mesenchymal transition-like changes in normal mammary epithelial cells, whereas Runx2 deletion in basal breast cancer cells inhibited cellular phenotypes associated with tumorigenesis. Notably, loss of Runx2 expression increased tumor latency and enhanced overall survival in a mouse model of breast cancer, with Runx2-deficient tumors exhibiting reduced cell proliferation. Together, our results establish a previously unreported function for Runx2 in breast cancer that may offer a novel generalized route for therapeutic interventions. Cancer Res; 74(18); 5277-86. ©2014 AACR.
Journal of Biological Chemistry | 2010
Thomas W. Owens; Fiona M Foster; Anthony J. Valentijn; Andrew P. Gilmore; Charles H. Streuli
Apoptosis is controlled by a signaling equilibrium between prosurvival and proapoptotic pathways, such that unwanted apoptosis is avoided, but when required it occurs rapidly and efficiently. Many apoptosis regulators display dual roles, depending upon whether a cell has received an apoptotic stimulus or not. Here, we identify a novel and unexpected function for X-linked inhibitor of apoptosis (XIAP) that occurs when apoptosis is triggered under physiological conditions. We show that in response to loss of survival signals provided by cell adhesion, endogenous XIAP translocates from the cytosol into a mitochondrial 400-kDa complex and that this occurs very early in the apoptosis process. Membrane-associated XIAP induces mitochondrial outer membrane permeabilization leading to cytochrome c and Smac release, which is dependent on Bax and Bak. Thus, although XIAP suppresses apoptosis in healthy cells, our data indicate that XIAP may contribute to it in response to a proapoptotic signal such as loss of extracellular matrix-dependent survival signaling. We suggest that, as with Bcl-2 family proteins, more diverse functions for XIAP exist than previously identified. Moreover, switching the function of proteins from anti- to proapoptotic forms may be a common theme in the efficient execution of cell death.
Cell Reports | 2014
Pengbo Wang; Jennefer Lindsay; Thomas W. Owens; Ewa J. Mularczyk; Stacey Warwood; Fiona M Foster; Charles H. Streuli; Keith Brennan; Andrew P. Gilmore
Summary Mitosis is a moment of exquisite vulnerability for a metazoan cell. Failure to complete mitosis accurately can lead to aneuploidy and cancer initiation. Therefore, if the exit from mitosis is delayed, normal cells are usually removed by apoptosis. However, how failure to complete mitosis activates apoptosis is still unclear. Here, we demonstrate that a phosphorylated form of the BH3-only protein Bid regulates apoptosis if mitotic exit is delayed. Bid is phosphorylated on serine 66 as cells enter mitosis, and this phosphorylation is lost during the metaphase-to-anaphase transition. Cells expressing a nonphosphorylatable version of Bid or a BH3-domain mutant were resistant to mitotic-arrest-induced apoptosis. Thus, we show that Bid phosphorylation primes cells to undergo mitochondrial apoptosis if mitotic exit is delayed. Avoidance of this mechanism may explain the selective pressure for cancer cells to undergo mitotic slippage.
Journal of carcinogenesis & mutagenesis | 2013
Thomas W. Owens; Andrew P. Gilmore; Charles H. Streuli; Fiona M Foster
Cancer is a disease in which normal physiological processes are imbalanced, leading to tumour formation, metastasis and eventually death. Recent biological advances have led to the advent of targeted therapies to complement traditional chemotherapy and radiotherapy. However, a major problem still facing modern medicine is resistance to therapies, whether targeted or traditional. Therefore, to increase the survival rates of cancer patients, it is critical that we continue to identify molecular targets for therapeutic intervention. The Inhibitor of Apoptosis (IAP) proteins act downstream of a broad range of stimuli, such as cytokines and extracellular matrix interactions, to regulate cell survival, proliferation and migration. These processes are dysregulated during tumourigenesis and are critical to the metastatic spread of the disease. IAPs are commonly upregulated in cancer and have therefore become the focus of much research as both biomarkers and therapeutic targets. Here we discuss the roles that IAPs may play in cancer, and the potential benefits and pitfalls that targeting IAPs could have in the clinic.