Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Wartmann is active.

Publication


Featured researches published by Thomas Wartmann.


Journal of Clinical Investigation | 2013

IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality

Hong Zhang; Patrick Neuhöfer; Liang Song; Björn Rabe; Marina Lesina; Magdalena U. Kurkowski; Matthias Treiber; Thomas Wartmann; Sara Regnér; Henrik Thorlacius; Dieter Saur; Gregor Weirich; Akihiko Yoshimura; Walter Halangk; Joseph P. Mizgerd; Roland M. Schmid; Stefan Rose-John; Hana Algül

Acute lung injury (ALI) is an inflammatory disease with a high mortality rate. Although typically seen in individuals with sepsis, ALI is also a major complication in severe acute pancreatitis (SAP). The pathophysiology of SAP-associated ALI is poorly understood, but elevated serum levels of IL-6 is a reliable marker for disease severity. Here, we used a mouse model of acute pancreatitis-associated (AP-associated) ALI to determine the role of IL-6 in ALI lethality. Il6-deficient mice had a lower death rate compared with wild-type mice with AP, while mice injected with IL-6 were more likely to develop lethal ALI. We found that inflammation-associated NF-κB induced myeloid cell secretion of IL-6, and the effects of secreted IL-6 were mediated by complexation with soluble IL-6 receptor, a process known as trans-signaling. IL-6 trans-signaling stimulated phosphorylation of STAT3 and production of the neutrophil attractant CXCL1 in pancreatic acinar cells. Examination of human samples revealed expression of IL-6 in combination with soluble IL-6 receptor was a reliable predictor of ALI in SAP. These results demonstrate that IL-6 trans-signaling is an essential mediator of ALI in SAP across species and suggest that therapeutic inhibition of IL-6 may prevent SAP-associated ALI.


Gut | 2013

Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice

Sendler M; Dummer A; Weiss Fu; Burkhard Krüger; Thomas Wartmann; Scharffetter-Kochanek K; van Rooijen N; Malla; Aghdassi A; Walter Halangk; Lerch Mm; Mayerle J

Background Acute pancreatitis has long been considered a disorder of pancreatic self-digestion, in which intracellular activation of digestive proteases induces tissue injury. Chemokines, released from damaged pancreatic cells then attract inflammatory cells, whose systemic action ultimately determines the disease severity. In the present work the opposite mechanism is investigated; that is, whether and how inflammatory cells can activate intracellular proteases. Design Using mice either deficient for the CD18-α subunit of the membrane attack complex-1 (MAC-1) complex or tumour necrosis factor (TNF)α, as well as after depletion of leucocyte subpopulations, pancreatitis was induced by 7-hourly caerulein injections (50 μg/kg, intraperitoneally). Pancreatic acini were coincubated in vitro from wild-type and cathepsin-B-deficient animals with phorbol-12-myristate-13-acetate (PMA)-activated neutrophils and macrophages, caerulein or TNFα, and activities of trypsin, cathepsin-B and caspase-3 were measured, as well as necrosis using fluorogenic substrates. TNFα was inhibited with monospecific antibodies. Results Deletion of CD18 prevented transmigration of leucocytes into the pancreas during pancreatitis, greatly reduced disease severity and abolished digestive protease activation. Depletion of neutrophils and macrophages equally reduced premature trypsinogen activation and disease severity. In vitro activated neutrophils and macrophages directly induced premature protease activation and cell death in pancreatic acini and stimulation of acini with TNFα induced caspase-3 activation and necrosis via a cathepsin-B and calcium-dependent mechanism. Neutralising antibodies against TNFα and genetic deletion of TNFα prevented leucocyte-induced trypsin activity and necrosis in isolated acini. Conclusions The soluble inflammatory cell mediator TNFα directly induces premature protease activation and necrosis in pancreatic acinar cells. This activation depends on calcium and cathepsin-B activity. The findings from the present work further suggest that targeting TNFα, for which pharmaceutical agents are readily available, could be an effective treatment strategy that directly addresses the cellular causes of pancreatitis.


Gut | 2007

Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation.

Orsolya Király; Thomas Wartmann; Miklós Sahin-Tóth

Background/aims: Mutations of the SPINK1 gene encoding pancreatic secretory trypsin inhibitor have been identified in association with chronic pancreatitis. The vast majority of patients carry the N34S variant, whereas other genetic variants are relatively rare and their disease association is uncertain. The aim of this study was to characterise and compare the functional defects caused by the six published missense mutations that affect mature SPINK1—namely, N34S, D50E, Y54H, P55S, R65Q, and R67C. Methods: Wild type and mutant SPINK1 were expressed in human embryonic kidney 293T cells via transient transfection. SPINK1 expression was characterised by RT-PCR, activity assays, and western blots. Results: Mutations N34S and P55S did not alter secretion of SPINK1 from HEK 293T cells, whereas mutation R65Q decreased secretion about twofold. Remarkably, mutations D50E, Y54H, and R67C abolished or markedly diminished secretion, but all three mutants were detected in cell extracts, indicating intracellular retention and degradation. Conclusions: The results identify intracellular folding defects as a novel mechanism of SPINK1 deficiency associated with chronic pancreatitis. The dramatic effects of the D50E and Y54H mutations indicate that the interaction between Asp50 and Tyr54 is critical for proper folding of the inhibitor. The disease-causing biochemical defect in the N34S mutant is unrelated to secretion or trypsin inhibitory activity and remains enigmatic. Finally, the patent functional defects in mutants D50E, Y54H, and R67C suggest disease association of these rare SPINK variants.


Applied Microbiology and Biotechnology | 2000

Genetic transformation and biotechnological application of the yeast Arxula adeninivorans.

Thomas Wartmann; Gotthard Kunze

Abstract The relatively unknown, non-pathogenic, dimorphic, haploid, ascomycetous yeast Arxula adeninivorans exhibits some unusual properties which are of biotechnological interest. The yeast is able to assimilate and ferment many compounds as sole source of carbon and/or nitrogen, it utilises n-alkanes and degrades starch efficiently. A. adeninivorans features such as thermo- and haloresistance as well as the yeasts uncommon growth and secretion behaviour should be especially emphasised. In media containing up to 20% NaCl, A. adeninivorans is able to grow at cultivation temperatures up to 48 °C. Additionally, the dimorphism of the yeast is unusual. Arxula grows at up temperatures of up to 42 °C as budding cells, which turn into mycelia at higher temperatures. This environmentally conditioned dimorphism is reversible and budding is reestablished when the cultivation temperature is decreased below 42 °C. Alteration of morphology correlates with changes in secretion behaviour. Mycelium cultures accumulate two-fold higher protein concentrations and contain two- to five-fold higher glucoamylase and invertase activities in the medium than budding cells. Based on these unusual properties, Arxula adeninivorans is used for heterologous gene expression and as a gene donor to construct more suitable yeasts for biotechnology. For example the Arxula glucoamylase gene was successfully expressed in Saccharomyces cerevisiae and Kluyveromyces lactis. Both transformed yeasts are able to assimilate and ferment starch as carbon source. A transformation system is used for heterologous gene expression which is based on integration of linearised DNA fragments in two to ten copies, e.g. into the 25S rDNA of A. adeninivorans by homologous recombination. The obtained transformants are mitotically stable. The expression of the lacZ gene from E. coli as well as the XylE gene from Pseudomonas putida indicates the suitability of A. adeninivorans as host for heterologous gene expression.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1995

Temperature-dependent dimorphism of the yeastArxula adeninivorans Ls3

Thomas Wartmann; Annette Krüger; Klaus Adler; Bui Minh Duc; Irene Kunze; Gotthard Kunze

Arxula adeninivorans Ls3 is described as an ascomycetous, arthroconidial, anamorphic, xerotolerant yeast, which was selected from wood hydrolysates in Siberia. By using minimal salt medium or yeast-extract-peptone-medium with glucose or maltose as carbon source it was shown that this yeast is able to grow at up to 48° C. Increasing temperatures induce changes in morphology from the yeast phase to mycelia depending on an altered programme of gene expression. This dimorphism is an environmentally conditioned (reversible) event and the mycelia can be induced at a cultivation temperature of 45° C. Depending on the morphology of strain Ls3 (yeast phase or mycelia) the secretion behaviour as well as the spectrum of polypeptides accumulated in the culture medium changed. The activities of the accumulated extracellular enzymes glucoamylase and invertase were 2 to 3 times higher in cultures grown at 45° C than in those grown at 30° C. While the level of the glucoamylase protein secreted from mycelia between 45 and 70 hours did not change, biochemical activity decreased after a cultivation time of 43 hours. It was shown that this effect depended on both the catabolic repression of the glucoamylase by glucose and the thermal inactivation of this enzyme in media without or with low concentrations of starch or maltose.


Gastroenterology | 2010

Cathepsin L inactivates human trypsinogen whereas cathepsin L deletion reduces the severity of pancreatitis in mice

Thomas Wartmann; Julia Mayerle; Thilo Kähne; Miklós Tóth; Manuel Ruthenbürger; Rainer Matthias; Anne Kruse; Thomas Reinheckel; Christoph Peters; F. Ulrich Weiss; Matthias Sendler; H. Lippert; Hans Ulrich Schulz; Ali Aghdassi; Annegret Dummer; Steffen Teller; Walter Halangk; Markus M. Lerch

BACKGROUND & AIMS Acute pancreatitis is characterized by an activation cascade of digestive enzymes in the pancreas. The first of these, trypsinogen, can be converted to active trypsin by the peptidase cathepsin B (CTSB). We investigated whether cathepsin L (CTSL) can also process trypsinogen to active trypsin and has a role in pancreatitis. METHODS In CTSL-deficient (Ctsl(-/-)) mice, pancreatitis was induced by injection of cerulein or infusion of taurocholate into the pancreatic duct. Human tissue, pancreatic juice, mouse pancreatitis specimens, and recombinant enzymes were studied by enzyme assay, immunoblot, N-terminal sequencing, immunocytochemistry, and electron microscopy analyses. Isolated acini from Ctsl(-/-) and Ctsb(-/-) mice were studied. RESULTS CTSL was expressed in human and mouse pancreas, colocalized with trypsinogen in secretory vesicles and lysosomes, and secreted into pancreatic juice. Severity of pancreatitis was reduced in Ctsl(-/-) mice, whereas apoptosis and intrapancreatic trypsin activity were increased. CTSL-induced cleavage of trypsinogen occurred 3 amino acids toward the C-terminus from the CTSB activation site and resulted in a truncated, inactive form of trypsin and an elongated propeptide (trypsinogen activation peptide [TAP]). This elongated TAP was not detected by enzyme-linked immunosorbent assay (ELISA) but was effectively converted to an immunoreactive form by CTSB. Levels of TAP thus generated by CTSB were not associated with disease severity, although this is what the TAP-ELISA is used to determine in the clinic. CONCLUSIONS CTSL inactivates trypsinogen and counteracts the ability of CTSB to form active trypsin. In mouse models of pancreatitis, absence of CTSL induces apoptosis and reduces disease severity.


Fems Yeast Research | 2002

High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans

Thomas Wartmann; Erik Böer; Almudena Huarto Pico; Heike Sieber; Oliver Bartelsen; Gerd Gellissen; Gotthard Kunze

The non-conventional dimorphic thermo- and salt-resistant yeast Arxula adeninivorans has been developed as a host for heterologous gene expression. For assessment of the system two model genes have been selected: the GFP gene encoding the intracellular green fluorescent protein, and the HSA gene encoding the secreted human serum albumin. The expression system includes two host strains, namely A. adeninivorans LS3, which forms budding cells at 30 degrees C and mycelia at >42 degrees C, and the strain A. adeninivorans 135, which forms mycelia at temperatures as low as 30 degrees C. For expression control the constitutive A. adeninivorans-derived TEF1-promoter and S. cerevisiae-derived PHO5-terminator were selected. The basic A. adeninivorans transformation/expression vector pAL-HPH1 is further equipped with the Escherichia coli-derived hph gene conferring hygromycin B resistance and the 25S rDNA from A. adeninivorans for rDNA targeting. Transformants were obtained for both budding cells and mycelia. In both cell types similar expression levels were achieved and the GFP was localised in the cytoplasm while more than 95% of the HSA accumulated in the culture medium. In initial fermentation trials on a 200-ml shake flask scale maximal HSA product levels were observed after 96 h of cultivation.


Applied Microbiology and Biotechnology | 1996

Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae

D. M. Bui; Irene Kunze; S. Förster; Thomas Wartmann; Christian Horstmann; Renate Manteuffel; Gotthard Kunze

The glucoamylase gene of the yeast Arxula adeninivorans Ls3 has been cloned from a genomic library and sequenced. The gene could be localized on chromosome 2 from A. adeninivorans and comprises 1875 bp. The first 16 N-terminal amino acids represent the signal sequence for entering the endomembrane system. Comparing the amino acid sequence from this glucoamylase with those of other fungal glucoamylases shows that the glucoamylase of strain Ls3 has a homology to the glucoamylases from Rhizopus oryzae (32.6%), Saccharomycopsis fibuligera (23.1%), Aspergillus niger (22.1%), and Saccharomyces diastaticus (15.4%). No homology could be detected to the glucoamylase of Schwanniomyces occidentalis. By using the GAL1 promoter from Saccharomyces cerevisiae within an autonomously replicating plasmid it was possible to express the isolated Arxula glucoamylase gene in Saccharomyces cerevisiae. The transformants secreted 95% of the enzyme into the culture medium. The N termini of glucoamylases synthesized in A. adeninivorans and S. cerevisiae transformants are identical, which means that the signal sequences were cleaved at the same positions during maturation of the proteins. The highest glucoamylase activities were reached in the culture medium of S. cerevisiae transformants after 36 h of fermentation. Northern hybridization showed that the glucoamylase transcripts were formed continuously for up to 70 h. These results reveal that the glucoamylase is expressed and secreted more rapidly in the S. cerevisiae transformants than in A. adeninivorans Ls3.


Gastroenterology | 2015

Impaired Autophagy Induces Chronic Atrophic Pancreatitis in Mice via Sex- and Nutrition-Dependent Processes

Kalliope N. Diakopoulos; Marina Lesina; Sonja Wörmann; Liang Song; Michaela Aichler; Lorenz Schild; Anna Artati; Werner Römisch-Margl; Thomas Wartmann; Robert Fischer; Yashar Kabiri; Hans Zischka; Walter Halangk; Ihsan Ekin Demir; Claudia Pilsak; Axel Walch; Christos S. Mantzoros; Jörg M. Steiner; Mert Erkan; Roland M. Schmid; Heiko Witt; Jerzy Adamski; Hana Algül

BACKGROUND & AIMS Little is known about the mechanisms of the progressive tissue destruction, inflammation, and fibrosis that occur during development of chronic pancreatitis. Autophagy is involved in multiple degenerative and inflammatory diseases, including pancreatitis, and requires the protein autophagy related 5 (ATG5). We created mice with defects in autophagy to determine its role in pancreatitis. METHODS We created mice with pancreas-specific disruption of Atg5 (Ptf1aCreex1;Atg5F/F mice) and compared them to control mice. Pancreata were collected and histology, immunohistochemistry, transcriptome, and metabolome analyses were performed. ATG5-deficient mice were placed on diets containing 25% palm oil and compared with those on a standard diet. Another set of mice received the antioxidant N-acetylcysteine. Pancreatic tissues were collected from 8 patients with chronic pancreatitis (CP) and compared with pancreata from ATG5-deficient mice. RESULTS Mice with pancreas-specific disruption of Atg5 developed atrophic CP, independent of β-cell function; a greater proportion of male mice developed CP than female mice. Pancreata from ATG5-deficient mice had signs of inflammation, necrosis, acinar-to-ductal metaplasia, and acinar-cell hypertrophy; this led to tissue atrophy and degeneration. Based on transcriptome and metabolome analyses, ATG5-deficient mice produced higher levels of reactive oxygen species than control mice, and had insufficient activation of glutamate-dependent metabolism. Pancreata from these mice had reduced autophagy, increased levels of p62, and increases in endoplasmic reticulum stress and mitochondrial damage, compared with tissues from control mice; p62 signaling to Nqo1 and p53 was also activated. Dietary antioxidants, especially in combination with palm oil-derived fatty acids, blocked progression to CP and pancreatic acinar atrophy. Tissues from patients with CP had many histologic similarities to those from ATG5-deficient mice. CONCLUSIONS Mice with pancreas-specific disruption of Atg5 develop a form of CP similar to that of humans. CP development appears to involve defects in autophagy, glutamate-dependent metabolism, and increased production of reactive oxygen species. These mice might be used to identify therapeutic targets for CP.


Fems Yeast Research | 2003

The ALEU2 gene--a new component for an Arxula adeninivorans-based expression platform.

Thomas Wartmann; Regina Stoltenburg; Erik Böer; Heike Sieber; Oliver Bartelsen; Gerd Gellissen; Gotthard Kunze

The ALEU2 gene, encoding beta-isopropylmalate dehydrogenase, was isolated from the non-conventional yeast Arxula adeninivorans. The isolated gene harbours an open reading frame of 1086 bp, encoding a putative protein of 362 amino acids. The derived protein sequence shares a high degree of homology with other fungal beta-isopropylmalate dehydrogenases thus confirming the identity of the gene. The isolated ALEU2 gene was tested for its suitability to complement the auxotrophy of an A. adeninivorans aleu2 host. For this purpose the plasmid pAL-ALEU2m which contains the ALEU2 gene as a selection marker and the 25S rDNA for targeting was employed in transformation experiments. Transformants harboured a single copy of the heterologous DNA and were found to be mitotically stable. For assessment of heterologous gene expression, two model genes were incorporated into the vector: the GFP gene, encoding intracellular green fluorescent protein, and the HSA gene, encoding the secreted human serum albumin. For expression control, both gene sequences were fused to the constitutive A. adeninivorans-derived TEF1 promoter and the Saccharomyces cerevisiae-derived PHO5 terminator. In the respective recombinant strains the GFP was localised in the cytoplasm, whereas more than 95% of the HSA accumulated in the culture medium. In initial fermentation trials using a 200-ml shake flask, maximal HSA product levels were observed after 96 h of cultivation.

Collaboration


Dive into the Thomas Wartmann's collaboration.

Top Co-Authors

Avatar

Walter Halangk

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Mayerle

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Regina Stoltenburg

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Rüdiger Bode

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge