Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Halangk is active.

Publication


Featured researches published by Walter Halangk.


Journal of Clinical Investigation | 2000

Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis

Walter Halangk; Markus M. Lerch; Barbara Brandt-Nedelev; Wera Roth; Thomas Reinheckel; Wolfram Domschke; H. Lippert; Christoph Peters; Jan M. Deussing

Autodigestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. The mechanism responsible for the intrapancreatic activation of digestive zymogens is unknown, but a recent hypothesis predicts that a redistribution of lysosomal cathepsin B (CTSB) into a zymogen-containing subcellular compartment triggers this event. To test this hypothesis, we used CTSB-deficient mice in which the ctsb gene had been deleted by targeted disruption. After induction of experimental secretagogue-induced pancreatitis, the trypsin activity in the pancreas of ctsb(-/-) animals was more than 80% lower than in ctsb(+/+) animals. Pancreatic damage as indicated by serum activities of amylase and lipase, or by the extent of acinar tissue necrosis, was 50% lower in ctsb(-/-) animals. These experiments provide the first conclusive evidence to our knowledge that cathepsin B plays a role in intrapancreatic trypsinogen activation and the onset of acute pancreatitis.


Nature Genetics | 2006

A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis

Heiko Witt; Miklós Sahin-Tóth; Olfert Landt; Jian-Min Chen; Thilo Kähne; Joost P. H. Drenth; Zoltán Kukor; Edit Szepessy; Walter Halangk; Stefan Dahm; Klaus Rohde; Hans Ulrich Schulz; Cédric Le Maréchal; Nejat Akar; Rudolf W. Ammann; Kaspar Truninger; Mario Bargetzi; Eesh Bhatia; Carlo Castellani; Giulia Martina Cavestro; Milos Cerny; Giovanni Destro-Bisol; Gabriella Spedini; Jan B.M.J. Jansen; Monika Koudova; Eva Rausova; Milan Macek; Núria Malats; Francisco X. Real; Hans Jürgen Menzel

Chronic pancreatitis is a common inflammatory disease of the pancreas. Mutations in the genes encoding cationic trypsinogen (PRSS1) and the pancreatic secretory trypsin inhibitor (SPINK1) are associated with chronic pancreatitis. Because increased proteolytic activity owing to mutated PRSS1 enhances the risk for chronic pancreatitis, mutations in the gene encoding anionic trypsinogen (PRSS2) may also predispose to disease. Here we analyzed PRSS2 in individuals with chronic pancreatitis and controls and found, to our surprise, that a variant of codon 191 (G191R) is overrepresented in control subjects: G191R was present in 220/6,459 (3.4%) controls but in only 32/2,466 (1.3%) affected individuals (odds ratio 0.37; P = 1.1 × 10−8). Upon activation by enterokinase or trypsin, purified recombinant G191R protein showed a complete loss of trypsin activity owing to the introduction of a new tryptic cleavage site that renders the enzyme hypersensitive to autocatalytic proteolysis. In conclusion, the G191R variant of PRSS2 mitigates intrapancreatic trypsin activity and thereby protects against chronic pancreatitis.


Journal of Clinical Investigation | 2013

IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality

Hong Zhang; Patrick Neuhöfer; Liang Song; Björn Rabe; Marina Lesina; Magdalena U. Kurkowski; Matthias Treiber; Thomas Wartmann; Sara Regnér; Henrik Thorlacius; Dieter Saur; Gregor Weirich; Akihiko Yoshimura; Walter Halangk; Joseph P. Mizgerd; Roland M. Schmid; Stefan Rose-John; Hana Algül

Acute lung injury (ALI) is an inflammatory disease with a high mortality rate. Although typically seen in individuals with sepsis, ALI is also a major complication in severe acute pancreatitis (SAP). The pathophysiology of SAP-associated ALI is poorly understood, but elevated serum levels of IL-6 is a reliable marker for disease severity. Here, we used a mouse model of acute pancreatitis-associated (AP-associated) ALI to determine the role of IL-6 in ALI lethality. Il6-deficient mice had a lower death rate compared with wild-type mice with AP, while mice injected with IL-6 were more likely to develop lethal ALI. We found that inflammation-associated NF-κB induced myeloid cell secretion of IL-6, and the effects of secreted IL-6 were mediated by complexation with soluble IL-6 receptor, a process known as trans-signaling. IL-6 trans-signaling stimulated phosphorylation of STAT3 and production of the neutrophil attractant CXCL1 in pancreatic acinar cells. Examination of human samples revealed expression of IL-6 in combination with soluble IL-6 receptor was a reliable predictor of ALI in SAP. These results demonstrate that IL-6 trans-signaling is an essential mediator of ALI in SAP across species and suggest that therapeutic inhibition of IL-6 may prevent SAP-associated ALI.


The American Journal of Gastroenterology | 2010

Autoantibodies against the exocrine pancreas in autoimmune pancreatitis: gene and protein expression profiling and immunoassays identify pancreatic enzymes as a major target of the inflammatory process

J.-Matthias Löhr; Ralf Faissner; Dirk Koczan; Peter Bewerunge; Claudio Bassi; Benedikt Brors; Roland Eils; Luca Frulloni; Anette Funk; Walter Halangk; Ralf Jesnowski; Lars Kaderali; Jörg Kleeff; Burkhard Krüger; Markus M. Lerch; Ralf Lösel; Mauro Magnani; Michael Neumaier; Stephanie Nittka; Miklós Sahin-Tóth; Julian Sänger; Sonja Serafini; Martina Schnölzer; Hermann Josef Thierse; Silke Wandschneider; Giuseppe Zamboni; Günter Klöppel

OBJECTIVES:Autoimmune pancreatitis (AIP) is thought to be an immune-mediated inflammatory process, directed against the epithelial components of the pancreas. The objective was to identify novel markers of disease and to unravel the pathogenesis of AIP.METHODS:To explore key targets of the inflammatory process, we analyzed the expression of proteins at the RNA and protein level using genomics and proteomics, immunohistochemistry, western blot, and immunoassay. An animal model of AIP with LP-BM5 murine leukemia virus-infected mice was studied in parallel. RNA microarrays of pancreatic tissue from 12 patients with AIP were compared with those of 8 patients with non-AIP chronic pancreatitis.RESULTS:Expression profiling showed 272 upregulated genes, including those encoding for immunoglobulins, chemokines and their receptors, and 86 downregulated genes, including those for pancreatic proteases such as three trypsinogen isoforms. Protein profiling showed that the expression of trypsinogens and other pancreatic enzymes was greatly reduced. Immunohistochemistry showed a near-loss of trypsin-positive acinar cells, which was also confirmed by western blotting. The serum of AIP patients contained high titers of autoantibodies against the trypsinogens PRSS1 and PRSS2 but not against PRSS3. In addition, there were autoantibodies against the trypsin inhibitor PSTI (the product of the SPINK1 gene). In the pancreas of AIP animals, we found similar protein patterns and a reduction in trypsinogen.CONCLUSIONS:These data indicate that the immune-mediated process characterizing AIP involves pancreatic acinar cells and their secretory enzymes such as trypsin isoforms. Demonstration of trypsinogen autoantibodies may be helpful for the diagnosis of AIP.


Gut | 2013

Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice

Sendler M; Dummer A; Weiss Fu; Burkhard Krüger; Thomas Wartmann; Scharffetter-Kochanek K; van Rooijen N; Malla; Aghdassi A; Walter Halangk; Lerch Mm; Mayerle J

Background Acute pancreatitis has long been considered a disorder of pancreatic self-digestion, in which intracellular activation of digestive proteases induces tissue injury. Chemokines, released from damaged pancreatic cells then attract inflammatory cells, whose systemic action ultimately determines the disease severity. In the present work the opposite mechanism is investigated; that is, whether and how inflammatory cells can activate intracellular proteases. Design Using mice either deficient for the CD18-α subunit of the membrane attack complex-1 (MAC-1) complex or tumour necrosis factor (TNF)α, as well as after depletion of leucocyte subpopulations, pancreatitis was induced by 7-hourly caerulein injections (50 μg/kg, intraperitoneally). Pancreatic acini were coincubated in vitro from wild-type and cathepsin-B-deficient animals with phorbol-12-myristate-13-acetate (PMA)-activated neutrophils and macrophages, caerulein or TNFα, and activities of trypsin, cathepsin-B and caspase-3 were measured, as well as necrosis using fluorogenic substrates. TNFα was inhibited with monospecific antibodies. Results Deletion of CD18 prevented transmigration of leucocytes into the pancreas during pancreatitis, greatly reduced disease severity and abolished digestive protease activation. Depletion of neutrophils and macrophages equally reduced premature trypsinogen activation and disease severity. In vitro activated neutrophils and macrophages directly induced premature protease activation and cell death in pancreatic acini and stimulation of acini with TNFα induced caspase-3 activation and necrosis via a cathepsin-B and calcium-dependent mechanism. Neutralising antibodies against TNFα and genetic deletion of TNFα prevented leucocyte-induced trypsin activity and necrosis in isolated acini. Conclusions The soluble inflammatory cell mediator TNFα directly induces premature protease activation and necrosis in pancreatic acinar cells. This activation depends on calcium and cathepsin-B activity. The findings from the present work further suggest that targeting TNFα, for which pharmaceutical agents are readily available, could be an effective treatment strategy that directly addresses the cellular causes of pancreatitis.


Free Radical Biology and Medicine | 1998

Occurrence of Oxidatively Modified Proteins: An Early Event in Experimental Acute Pancreatitis

Thomas Reinheckel; Barbara Nedelev; Juliane Prause; Wolfgang Augustin; Hans-Ulrich Schulz; H. Lippert; Walter Halangk

Free radical-mediated injury is believed to play a key role in the pathogenesis of acute pancreatitis (AP). Therefore, oxidative damage of proteins may be an important event in the development of AP. The present study was performed to investigate oxidative protein modification, quantified as 2,4-dinitrophenylhydrazine-reactive protein-carbonyls, during the time course of taurocholate-induced pancreatitis of the rat and to analyze oxidatively modified proteins by Western blotting. Protein modification in pancreatic homogenates was found as early as 30 min after induction of severe AP with 3% taurocholate preceding the elevation of serum amylase activity and the increase of malondialdehyde in the tissue. A correlation of protein-carbonyl contents to a score of pancreatic macroscopic alterations (r = .69) and to the wet weight/dry weight ratio (r = .65) was found. Infusion of 5% taurocholate resulted in fulminant AP with high lethality during the 24 h of the experiment. However, rats surviving showed significantly lower level of protein-carbonyls than animals that died between 20-24 h after AP induction. The quantitative data were confirmed by the intensity of immunostained protein-carbonyls. The present data show a rather uniform increase in the staining pattern not revealing single, selectively damaged proteins. The aldehydic product of lipid peroxidation 4-hydroxynonenal (HNE) is known for its reactivity towards proteins. Interestingly, an antibody raised against protein-bound HNE did not indicate an increased protein modification by this aldehyde. In conclusion, experimental AP is characterized by an early oxidative protein modification, possibly contributing to functional impairment of the pancreas. This protein alteration may not be mediated by HNE.


Gastroenterology | 2010

Cathepsin L inactivates human trypsinogen whereas cathepsin L deletion reduces the severity of pancreatitis in mice

Thomas Wartmann; Julia Mayerle; Thilo Kähne; Miklós Tóth; Manuel Ruthenbürger; Rainer Matthias; Anne Kruse; Thomas Reinheckel; Christoph Peters; F. Ulrich Weiss; Matthias Sendler; H. Lippert; Hans Ulrich Schulz; Ali Aghdassi; Annegret Dummer; Steffen Teller; Walter Halangk; Markus M. Lerch

BACKGROUND & AIMS Acute pancreatitis is characterized by an activation cascade of digestive enzymes in the pancreas. The first of these, trypsinogen, can be converted to active trypsin by the peptidase cathepsin B (CTSB). We investigated whether cathepsin L (CTSL) can also process trypsinogen to active trypsin and has a role in pancreatitis. METHODS In CTSL-deficient (Ctsl(-/-)) mice, pancreatitis was induced by injection of cerulein or infusion of taurocholate into the pancreatic duct. Human tissue, pancreatic juice, mouse pancreatitis specimens, and recombinant enzymes were studied by enzyme assay, immunoblot, N-terminal sequencing, immunocytochemistry, and electron microscopy analyses. Isolated acini from Ctsl(-/-) and Ctsb(-/-) mice were studied. RESULTS CTSL was expressed in human and mouse pancreas, colocalized with trypsinogen in secretory vesicles and lysosomes, and secreted into pancreatic juice. Severity of pancreatitis was reduced in Ctsl(-/-) mice, whereas apoptosis and intrapancreatic trypsin activity were increased. CTSL-induced cleavage of trypsinogen occurred 3 amino acids toward the C-terminus from the CTSB activation site and resulted in a truncated, inactive form of trypsin and an elongated propeptide (trypsinogen activation peptide [TAP]). This elongated TAP was not detected by enzyme-linked immunosorbent assay (ELISA) but was effectively converted to an immunoreactive form by CTSB. Levels of TAP thus generated by CTSB were not associated with disease severity, although this is what the TAP-ELISA is used to determine in the clinic. CONCLUSIONS CTSL inactivates trypsinogen and counteracts the ability of CTSB to form active trypsin. In mouse models of pancreatitis, absence of CTSL induces apoptosis and reduces disease severity.


British Journal of Pharmacology | 2005

Activity of recombinant trypsin isoforms on human proteinase‐activated receptors (PAR): mesotrypsin cannot activate epithelial PAR‐1, ‐2, but weakly activates brain PAR‐1

Zoryana V. Grishina; Ewa Ostrowska; Walter Halangk; Miklós Sahin-Tóth; Georg Reiser

Trypsin‐like serine proteinases trigger signal transduction pathways through proteolytic cleavage of proteinase‐activated receptors (PARs) in many tissues. Three members, PAR‐1, PAR‐2 and PAR‐4, are trypsin substrates, as trypsinolytic cleavage of the extracellular N terminus produces receptor activation. Here, the ability of the three human pancreatic trypsin isoforms (cationic trypsin, anionic trypsin and mesotrypsin (trypsin IV)) as recombinant proteins was tested on PARs. Using fura 2 [Ca2+]i measurements, we analyzed three human epithelial cell lines, HBE (human bronchial epithelial), A549 (human pulmonary epithelial) and HEK (human embryonic kidney)‐293 cells, which express functional PAR‐1 and PAR‐2. Human mesotrypsin failed to induce a PAR‐mediated Ca2+ response in human epithelial cells even at high concentrations. In addition, mesotrypsin did not affect the magnitude of PAR activation by subsequently added bovine trypsin. In HBE cells, which like A549 cells express high PAR‐2 levels with negligible PAR‐1 levels (<11%), half‐maximal responses were seen for both cationic and anionic trypsins at about 5 nM. In the epithelial cells, mesotrypsin did not activate PAR‐2 or PAR‐1, whereas both anionic and cationic trypsins were comparable activators. We also investigated human astrocytoma 1321N1cells, which express PAR‐1 and some PAR‐3, but no PAR‐2. High concentrations (>100 nM) of mesotrypsin produced a relatively weak Ca2+ signal, apparently through PAR‐1 activation. Half‐maximal responses were observed at 60 nM mesotrypsin, and at 10–20 nM cationic and anionic trypsins. Using a desensitization assay with PAR‐2‐AP, we confirmed that both cationic and anionic trypsin isoforms cause [Ca2+]i elevation in HBE cells mainly through PAR‐2 activation. Desensitization of PAR‐1 with thrombin receptor agonist peptide in 1321N1 cells demonstrated that all three recombinant trypsin isoforms act through PAR‐1. Thus, the activity of human cationic and anionic trypsins on PARs was comparable to that of bovine pancreatic trypsin. Mesotrypsin (trypsin IV), in contrast to cationic and anionic trypsin, cannot activate or disable PARs in human epithelial cells, demonstrating that the receptors are no substrates for this isoenzyme. On the other hand, mesotrypsin activates PAR‐1 in human astrocytoma cells. This might play a role in protection/degeneration or plasticity processes in the human brain.


Gastroenterology | 2015

Impaired Autophagy Induces Chronic Atrophic Pancreatitis in Mice via Sex- and Nutrition-Dependent Processes

Kalliope N. Diakopoulos; Marina Lesina; Sonja Wörmann; Liang Song; Michaela Aichler; Lorenz Schild; Anna Artati; Werner Römisch-Margl; Thomas Wartmann; Robert Fischer; Yashar Kabiri; Hans Zischka; Walter Halangk; Ihsan Ekin Demir; Claudia Pilsak; Axel Walch; Christos S. Mantzoros; Jörg M. Steiner; Mert Erkan; Roland M. Schmid; Heiko Witt; Jerzy Adamski; Hana Algül

BACKGROUND & AIMS Little is known about the mechanisms of the progressive tissue destruction, inflammation, and fibrosis that occur during development of chronic pancreatitis. Autophagy is involved in multiple degenerative and inflammatory diseases, including pancreatitis, and requires the protein autophagy related 5 (ATG5). We created mice with defects in autophagy to determine its role in pancreatitis. METHODS We created mice with pancreas-specific disruption of Atg5 (Ptf1aCreex1;Atg5F/F mice) and compared them to control mice. Pancreata were collected and histology, immunohistochemistry, transcriptome, and metabolome analyses were performed. ATG5-deficient mice were placed on diets containing 25% palm oil and compared with those on a standard diet. Another set of mice received the antioxidant N-acetylcysteine. Pancreatic tissues were collected from 8 patients with chronic pancreatitis (CP) and compared with pancreata from ATG5-deficient mice. RESULTS Mice with pancreas-specific disruption of Atg5 developed atrophic CP, independent of β-cell function; a greater proportion of male mice developed CP than female mice. Pancreata from ATG5-deficient mice had signs of inflammation, necrosis, acinar-to-ductal metaplasia, and acinar-cell hypertrophy; this led to tissue atrophy and degeneration. Based on transcriptome and metabolome analyses, ATG5-deficient mice produced higher levels of reactive oxygen species than control mice, and had insufficient activation of glutamate-dependent metabolism. Pancreata from these mice had reduced autophagy, increased levels of p62, and increases in endoplasmic reticulum stress and mitochondrial damage, compared with tissues from control mice; p62 signaling to Nqo1 and p53 was also activated. Dietary antioxidants, especially in combination with palm oil-derived fatty acids, blocked progression to CP and pancreatic acinar atrophy. Tissues from patients with CP had many histologic similarities to those from ATG5-deficient mice. CONCLUSIONS Mice with pancreas-specific disruption of Atg5 develop a form of CP similar to that of humans. CP development appears to involve defects in autophagy, glutamate-dependent metabolism, and increased production of reactive oxygen species. These mice might be used to identify therapeutic targets for CP.


Pancreas | 2003

Pathophysiology of alcohol-induced pancreatitis

Markus M. Lerch; Elke Albrecht; Manuel Ruthenbürger; Julia Mayerle; Walter Halangk; Burkhard Krüger

Excessive ethanol consumption is a common risk factor for acute and chronic pancreatitis. Ethanol could lead to the onset of pancreatitis in a number of ways; the most recently discovered is its effect on intrapancreatic digestive enzyme activation, by either sensitizing acinar cells to pathologic stimuli or stimulating the release of a secretagogue (cholecystokinin) from duodenal I cells. Recent advances in cell biologic and molecular techniques have permitted us to address the intracellular events involved in digestive enzyme activation in a manner that was previously considered impossible. Investigations that used these novel techniques found that (a) trypsin is, in contrast to its role in the small intestine, not necessarily involved in the premature intracellular activation of other digestive proteases such as proelastase; (b) trypsinogen does not autoactivate intracellularly but is instead largely activated by the lysosomal hydrolase cathepsin B; and (c) the role of trypsin in the intrapancreatic protease cascade is most likely one that involves the degradation, rather than the activation, of active digestive proteases including trypsin itself. These studies, as well as investigations that have addressed the role of mutant trypsin in the disease onset of hereditary pancreatitis, suggest that trypsin may not be critical for triggering pancreatitis but might have a protective role against the action of some of the other digestive proteases. While the specific role of different digestive enzymes in initiating pancreatitis is still a matter of debate and the topic of ongoing investigations, experimental evidence suggests that ethanol can directly interfere with the processes involved in digestive zymogen activation.

Collaboration


Dive into the Walter Halangk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Lippert

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Thomas Wartmann

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Hans-Ulrich Schulz

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Julia Mayerle

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Pross

Otto-von-Guericke University Magdeburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge