Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Zack is active.

Publication


Featured researches published by Thomas Zack.


Geochemistry Geophysics Geosystems | 2006

MPI‐DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios

Klaus Peter Jochum; Brigitte Stoll; Kirstin Herwig; Matthias Willbold; Albrecht W. Hofmann; Marghaleray Amini; Susanne Aarburg; Wafa Abouchami; Eric Hellebrand; Beate Mocek; Ingrid Raczek; Andreas Stracke; Olivier Alard; Claudia Bouman; Stefan Becker; Marc Dücking; Helene Brätz; Reiner Klemd; Deon de Bruin; Dante Canil; Dave Hugh Cornell; Cees‐Jan de Hoog; Claude Dalpe; Leonid V. Danyushevsky; Anton Eisenhauer; Yongjun Gao; J. E. Snow; Nora Groschopf; Detlef Günther; Christopher Latkoczy

We present new analytical data of major and trace elements for the geological MPI-DING glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, BM90/21-G, T1-G, and ATHO-G. Different analytical methods were used to obtain a large spectrum of major and trace element data, in particular, EPMA, SIMS, LA-ICPMS, and isotope dilution by TIMS and ICPMS. Altogether, more than 60 qualified geochemical laboratories worldwide contributed to the analyses, allowing us to present new reference and information values and their uncertainties (at 95% confidence level) for up to 74 elements. We complied with the recommendations for the certification of geological reference materials by the International Association of Geoanalysts (IAG). The reference values were derived from the results of 16 independent techniques, including definitive (isotope dilution) and comparative bulk (e.g., INAA, ICPMS, SSMS) and microanalytical (e.g., LA-ICPMS, SIMS, EPMA) methods. Agreement between two or more independent methods and the use of definitive methods provided traceability to the fullest extent possible. We also present new and recently published data for the isotopic compositions of H, B, Li, O, Ca, Sr, Nd, Hf, and Pb. The results were mainly obtained by high-precision bulk techniques, such as TIMS and MC-ICPMS. In addition, LA-ICPMS and SIMS isotope data of B, Li, and Pb are presented.


Chemical Geology | 2002

Trace element abundances in rutiles from eclogites and associated garnet mica schists

Thomas Zack; Andreas Kronz; Stephen F. Foley; Toby Rivers

Abstract We present electron microprobe and laser ablation microprobe (LAM) data for a range of high field strength (Zr, Nb, Mo, Sn, Sb, Hf, Ta, W) and other trace elements (Al, Si, Ca, V, Cr, Mn, Fe, Pb, Th, U) in rutile from eclogites and garnet mica schists from Trescolmen, Central Alps. Most analysed rutiles are homogeneous (at least for Nb, Cr, W, Zr, V and Fe), both on a single grain scale and between grains from a single thin section. Concentrations of V, Zr, Nb, Sb and W determined by both electron and laser ablation microprobe techniques yield similar results and confirm the reliability of the analytical methods within estimated precision. Measurements of trace element contents of coexisting phases in eclogites and their modal abundances show that rutile is the dominant carrier (>90% of whole rock content) for Ti, Nb, Sb, Ta and W as well as an important carrier (5–45% of the whole rock content) for V, Cr, Mo and Sn. The crystallographic implications are that, for relatively rigid crystal sites such as in rutile, trace elements with a similar ionic radius are preferred over trace elements with the same charge but deviating size. Our results demonstrate the utility of rutile chemistry in the following applications: (1) By using a combination of the measured TiO2 content of the whole rock and the trace element concentration of rutile, precise whole rock data on elements that are either difficult to analyze by conventional techniques such as XRF or solution ICP-MS (Nb, Sb, Ta, W) or may be susceptible to late stage alteration (Sb) can be estimated. (2) Trace element contents of detrital rutile grains are a potentially powerful tool for sedimentary provenance studies since they reflect key element ratios (e.g., Nb/TiO2 and Cr/TiO2) of their source rocks. In addition, measurements of trace elements in detrital rutiles might help distinguish possible source rocks, e.g., high-grade metamorphic rocks such as eclogites and high-pressure granulites from hydrothermal ore deposits and kimberlites. In view of the dominance of rutile in the Sb budget of subducting oceanic crust, and the enrichment of Sb in the slab component of subduction zones, additional experimental studies on Sb-partitioning between rutile and fluid are needed in order to understand the behaviour of Sb in subduction zones.


Earth and Planetary Science Letters | 2003

Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust

Thomas Zack; Paul B. Tomascak; Roberta L. Rudnick; Claude Dalpe; William F. McDonough

Abstract Eclogites from Trescolmen, Switzerland, derive from basaltic protoliths that experienced variable degrees of low- T seafloor alteration prior to high pressure metamorphism. δ 7 Li of the eclogites (−11 to +5‰) ranges to dramatically lower values than observed in fresh MORB, or altered MORB (+4.5 to +14‰ for low- T and −2 to +8‰ for high- T altered MORB). These low values cannot be explained by fluid interaction with surrounding garnet mica schist, which is generally isotopically heavier (δ 7 Li of +2.4 to +3.8‰). The low δ 7 Li values were likely produced by isotope fractionation through Rayleigh distillation during dehydration of clays and/or chlorite at early stages of metamorphism. These data are consistent with isotopically heavy Li being released into the forearc mantle wedge in subduction zones, while an isotopically light component is subducted deeply, and may form a distinct mantle reservoir that could be sampled by plume-related magmas.


Geology | 2013

Jurassic accretionary complex and ophiolite from northeast Turkey: No evidence for the Cimmerian continental ribbon

Gültekin Topuz; Gönenç Göçmengil; Yann Rolland; Ö. Faruk Çelık; Thomas Zack; Axel K. Schmitt

Permian-Triassic and Late Cretaceous accretionary complexes, ascribed to the consumption of two distinct oceans, the Paleo- and Neo-Tethys, are exposed over extensive areas in the Eastern Mediterranean region. However, a separating continental ribbon, the so-called Cimmeride continent, between the Paleo- and Neo-Tethys during early Mesozoic time cannot be defined. Here we report a previously unknown Early Jurassic metamorphic oceanic accretionary complex and ophiolite from northeast Turkey, bounded by oceanic accretionary complexes of Permian-Triassic and Late Cretaceous age to the north and the south, respectively, without a continental domain in between. This special tectonic position and widespread coexistence of Permian-Triassic and Late Cretaceous accretionary complexes alongside the Izmir-Ankara-Erzincan suture imply that (1) the southern margin of Laurasia in the eastern Mediterranean region grew by episodic accretionary processes from late Paleozoic to end-Mesozoic time without involvement of a Cimmerian continental ribbon, and (2) the Paleo-Tethys and northern branch of the Neo-Tethys were not distinct oceans in the Eastern Mediterranean region.


European Journal of Mineralogy | 2004

Cold subduction of oceanic crust Implications from a lawsonite eclogite from the Dominican Republic

Thomas Zack; Toby Rivers; Richard Brumm; Andreas Kronz

Lawsonite eclogite is a rare rock type that has been described from only five natural occurrences. In contrast, laboratory experiments and thermal models predict that lawsonite eclogite should be widespread in subducted oceanic crust deeper than 1.5 GPa. Here we report a new lawsonite eclogite find from the Dominican Republic that provides constraints on the conditions of subducted crust and on its return to the surface. In this sample, lawsonite coexisting with omphacite occurs as both inclusions in garnet and as porphyroblasts, the latter being partly replaced at their margins by epidote and zoisite. Peak pressure conditions estimated from lawsonite-phengite-omphacite-garnet assemblages were ca 1.6 GPa at a temperature of 360°C, implying formation under a geotherm of ca . 8°C/km. Peak temperature conditions of 410–450°C were in the zoisite eclogite field, suggesting that the sample crossed from the stability field of lawsonite eclogite into that of zoisite eclogite as a result of increasing temperature. A comparison with other reported occurrences indicates that most lawsonite eclogite exhumed at the Earths surface formed in accretionary wedges. The rarity of lawsonite eclogite at the Earths surface may be principally due to two factors: (i) that in ‘normal’ subduction settings lawsonite eclogite enters the subduction factory and hence is usually not exhumed; and (ii) that in accretionary wedge settings, where the PT path leaves the stability field of lawsonite eclogite due to heating, lawsonite eclogite is only preserved if the exhumation path is constrained to a narrow window where the terminal stability of lawsonite is not crossed.


Journal of Geophysical Research | 2000

Growth and high‐resolution paleoenvironmental signals of rhodoliths (coralline red algae): A new biogenic archive

Jochen Halfar; Thomas Zack; Andreas Kronz; James C. Zachos

We investigated rhodoliths (coralline red algae) from a subtropical locality in the Gulf of California (Lithothamnium crassiusculum) and a subarctic locality in Newfoundland (Lithothamnium glaciale) for their potential as paleoenvironmental archives using microanalytical geochemical techniques to measure variations in δ18O, Mg, and Ca. Rhodoliths are potentially well suited as recorders of shallow water paleoenvironmental signals because they (1) have worldwide distribution from the tropics to polar regions, (2) are long lived from decades to centuries, and (3) display well-developed growth bands. Our results indicate that rhodolith growth bands preserve ultrahigh-resolution records of paleoceanographic-paleoclimatic change and likely constitute an important new archive for reconstructing the paleoenvironmental history of littoral-neritic areas in which these algae are found. The δ18O content of individually sampled rhodolith growth bands ranges from −2.4 to −4.6‰ in L. crassiusculum and from −3.2 to −0.3‰ in L. glaciale. In both cases, the range of δ18O values suggests a slightly lower amplitude of variation in sea surface temperature than that actually measured in the ocean at the two study sites. Both L. crassiusculum and L. glaciale show a negative offset from isotopic equilibrium. Electron microprobe analysis of magnesium and calcium in growth bands reveals cyclic variations with values ranging between 7.7–18.5 mol % MgCO3 in L. glaciale and 13.2–22.5 mol % MgCO3 in L. crassiusculum. In addition, electron microprobe element maps highlight individual growth bands, provide a powerful approach to study rhodolith formation, and indicate that the specimens we analyzed have vertical growth rates of 250–450 μm/yr.


Geological Magazine | 2011

Sinistral transport along the Trans-European Suture Zone: detrital zircon–rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides

Nilgün Okay; Thomas Zack; Aral I. Okay; Matthias Barth

The Lower Carboniferous flysch of the Istanbul Zone in Turkey is an over 1500 m thick turbiditic sandstone–shale sequence marking the onset of the Variscan deformation in the Pontides. It overlies Lower Carboniferous black cherts and is unconformably overlain by Lower Triassic continental sandstones and conglomerates. The petrography of the Carboniferous sandstones and the geochronology and geochemistry of the detrital zircons and rutiles were studied to establish the provenance of the clastic rocks. The sandstones are feldspathic to lithic greywackes and subgreywackes with approximately equal amounts of quartz, feldspar and lithic clasts. The amount of quartz and lithic fragments decreases upwards in the sequence at the expense of feldspar. The lithic fragments are dominated by intermediate volcanic rocks, followed by metamorphic and sedimentary rock fragments. Coarse lithic fragments are generally granitoidic. In the discrimination diagrams, sandstone samples lie mainly in the field of dissected arc. A total of 218 detrital zircons and 35 detrital rutiles from four sandstone samples were analysed with laser ablation ICP-MS. The detrital zircons show a predominantly bimodal age distribution with Late Devonian to Early Carboniferous (390 to 335 Ma) and Cambrian–Neoproterozoic (640 to 520 Ma) ages. The remaining 9 % of the analysed zircons are in the 1700–2750 Ma range; zircons of the 700–1700 Ma age range are absent. The REE patterns and Th/U ratios of the zircons are consistent with a magmatic origin. With one exception (Neoproterozoic), the rutile ages are Late Devonian–Early Carboniferous and their geochemistry indicates that they were derived from amphibolite-facies metamorphic rocks. Sandstone petrography and detrital zircon–rutile ages suggest one dominant source for the Lower Carboniferous sandstones: a Late Devonian to Early Carboniferous magmatic and metamorphic province with overprinted Neoproterozoic basement. Late Devonian–Early Carboniferous magmatic and metamorphic rocks are unknown from the Eastern Mediterranean region. They are, however, widespread in central Europe. The Istanbul Zone is commonly correlated with the Avalonian terrranes in central Europe, which collided with the Armorican terranes during Carboniferous times, resulting in the Variscan orogeny. The Carboniferous flysch of the Istanbul Zone must have been derived from a colliding Armorican terrane, as indicated by the absence of 700–1700 Ma zircons and by Late Devonian–Early Carboniferous magmatism, typical features of the Armorican terranes. This suggests that during Carboniferous times the Istanbul terrane was located close to the Bohemian Massif and has been translated by strike-slip along the Trans-European Suture Zone to its Cretaceous position north of the Black Sea.


Journal of Geophysical Research | 2011

Freshening of the Alaska Coastal Current recorded by coralline algal Ba/Ca ratios

P. Chan; Jochen Halfar; Branwen Williams; Steffen Hetzinger; Robert S. Steneck; Thomas Zack; Dorrit E. Jacob

Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean‐atmospheric processes and affecting the global cycling of the world’s oceans. Glacier‐fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long‐term high‐resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long‐lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal‐to‐multidecadal ocean‐atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.


American Journal of Science | 2013

Jurassic ophiolite formation and emplacement as backstop to a subduction-accretion complex in northeast Turkey, the Refahıye ophiolite, and relation to the Balkan ophiolites,

Gültekin Topuz; Ö. Faruk Çelık; A. M. Celâl Şengör; I. Emır Altintaş; Thomas Zack; Yann Rolland; Mathias Barth

The eastern Mediterranean region within the Tethyan realm shows a high concentration of ophiolites with contrasting times of formation and emplacement along the belt: In the Balkans, the ophiolites formed during the early to medial Jurassic, and were obducted during the late Jurassic, whereas in Turkey and farther east, structurally intact Jurassic ophiolites are rare and Jurassic ophiolite obduction is unknown. Here we report a structurally intact, large ophiolite body of early Jurassic age from NE Turkey, the Refahiye ophiolite, located close to the suture zone between the Eastern Pontides and the Menderes-Taurus block. The Refahiye ophiolite forms an outcrop belt, 175 km long and 20 km wide, and is tectonically bound by the late Cretaceous ophiolitic mélange to the south, and by the North Anatolian Transform Fault against the Triassic low-grade metamorphic rocks to the north. Early to medial Jurassic very low- to low-grade metamorphic rocks, interpreted as intraoceanic subduction-accretion complexes, occur either beneath the ophiolite or as thrust slices within it. The ophiolite body within the studied section is made up of mantle peridotite (clinopyroxene-bearing harzburgite and minor dunite) crosscut by up to 20 cm thick veins of clinopyroxenite and later dikes/pods/stocks of gabbro ranging in size from 2 m to several hundreds of meters. The gabbro is represented by two distinct types: (i) cumulate gabbro, and (ii) non-cumulate gabbro with locally well-developed igneous foliation. Within the non-cumulate gabbro or enclosing peridotite, there are up to 5 m and 50 cm-thick veins of trondhjemite and pegmatitic gabbro, respectively. LA-ICP-MS dating on zircons from two trondhjemite samples yielded weighted mean ages of ∼184 ± 4 Ma and 178 ± 4 Ma (2σ), respectively, suggesting formation during early Jurassic time. Formation in a suprasubduction-zone forearc setting is inferred from (i) wide-ranging pyroxene and spinel compositions in the peridotites as documented in most suprasubduction-zone ophiolites, (ii) arc tholeiitic signature of the non-cumulate gabbros, and (iii) association of the ophiolite with the coeval subduction-accretion complexes. Emplacement of a trapped forearc ophiolite above its own subduction-accretion complex as a backstop is proposed based on a series of field relationships such as (i) intimate association of the unsubducted suprasubduction-zone ophiolite with coeval accretionary complexes, (ii) absence of unambiguous relationship to the southern Atlantic-type continental margin, and (iii) absence of any stratigraphic indications for the ophiolite obduction in the southern Atlantic-type continental margin during Jurassic time. This is a clear difference from the Jurassic ophiolites in the Balkans that were obducted over the Atlantic-type continental margin. This difference in mode of emplacement is most probably related to the greater distance of the intra-oceanic subduction zone to the Atlantic-type continental margin than it was in the Balkans, which is commensurate with the greater width of the Tethys in the east during Jurassic time.


American Mineralogist | 2011

Evidence for boron incorporation into the serpentine crystal structure

Sonja Pabst; Thomas Zack; Ivan P. Savov; Thomas Ludwig; Detlef Rost; Edward P. Vicenzi

Abstract Serpentinite mud volcanoes from the Mariana forearc comprise B-rich mantle wedge peridotites serpentinized by slab fluids. The major component of these rocks are serpentine group minerals [Mg3Si2O5(OH)4], showing highly variable textural and geochemical features. Micro-Raman spectroscopy reveals that the serpentine minerals are well-crystallized lizardite and chrysotile. In situ SIMS spot analyses and element mapping via ToF-SIMS show that B is evenly distributed across serpentine grains, suggesting that serpentine, both lizardite and chrysotile in different textural regions, can host significant amounts of B (up to -200 μg/g) into its crystal structure. As such structurally bound B can only be released during recrystallization or serpentine breakdown, our results have implications for modeling of the efficiency of cross-arc fluid mobile element recycling in subduction zones and stress the importance of the hydrated forearc mantle as a reservoir for fluid mobile elements.

Collaboration


Dive into the Thomas Zack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Kronz

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter H. Adey

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silke Triebold

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Daniel F. Stockli

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge