Thorben Dammeyer
Braunschweig University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thorben Dammeyer.
Current Biology | 2008
Thorben Dammeyer; Sarah C. Bagby; Matthew B. Sullivan; Sallie W. Chisholm; Nicole Frankenberg-Dinkel
Although the oceanic cyanobacterium Prochlorococcus harvests light with a chlorophyll antenna [1-3] rather than with the phycobilisomes that are typical of cyanobacteria, some strains express genes that are remnants of the ancestral Synechococcus phycobilisomes [4]. Similarly, some Prochlorococcus cyanophages, which often harbor photosynthesis-related genes [5], also carry homologs of phycobilisome pigment biosynthesis genes [6, 7]. Here, we investigate four such genes in two cyanophages that both infect abundant Prochlorococcus strains [8]: homologs of heme oxygenase (ho1), 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (pebA), ferredoxin (petF) in the myovirus P-SSM2, and a phycocyanobilin:ferredoxin oxidoreductase (pcyA) homolog in the myovirus P-SSM4. We demonstrate that the phage homologs mimic the respective host activities, with the exception of the divergent phage PebA homolog. In this case, the phage PebA single-handedly catalyzes a reaction for which uninfected host cells require two consecutive enzymes, PebA and PebB. We thus renamed the phage enzyme phycoerythrobilin synthase (PebS). This gene, and other pigment biosynthesis genes encoded by P-SSM2 (petF and ho1), are transcribed during infection, suggesting that they can improve phage fitness. Analyses of global ocean metagenomes show that PcyA and Ho1 occur in both cyanobacteria and their phages, whereas the novel PebS-encoding gene is exclusive to phages.
Journal of Bacteriology | 2006
Heike Reents; Richard Münch; Thorben Dammeyer; Dieter Jahn; Elisabeth Härtig
The Bacillus subtilis transcriptional regulator Fnr is an integral part of the regulatory cascade required for the adaptation of the bacterium to low oxygen tension. The B. subtilis Fnr regulon was defined via transcriptomic analysis in combination with bioinformatic-based binding site prediction. Four distinct groups of Fnr-dependent genes were observed. Group 1 genes (narKfnr, narGHJI, and arfM) are generally induced by Fnr under anaerobic conditions. All corresponding promoters contain an essential Fnr-binding site centered -41.5/-40.5 bp upstream of the transcriptional start point, suggesting their induction by direct Fnr interaction. Group 2 genes (alsSD, ldh lctP, ywcJ, and cydABCD) are characterized by anaerobic repression in the presence of nitrate. Mutational analysis of the Fnr-binding sites found in three of the corresponding promoters excluded their function in Fnr-mediated repression. Genetic evidence showing that group 2 genes are anaerobically repressed by nitrate reductase formation was accumulated. A possible role of the redox regulator YdiH in the regulation of group 2 genes was initially investigated. Group 3 genes are characterized by their Fnr-dependent activation in the presence of nitrate and the lack of an Fnr-binding site in their promoters. The analysis of Group 3 gene transcription (ykuNOP and ydbN) indicated that Fnr induces nitrate reductase production, which leads to the formation of the regulatory compound nitrite from nitrate. Finally, the group 4 operon acoABCL, lacking an Fnr-binding site, requires Fnr-dependent nitrate reductase formation for its general anaerobic induction. A regulatory model for the observed complex Fnr-mediated gene expression was deduced.
Nature Methods | 2012
Jürgen J. Schmied; Andreas Gietl; Phil Holzmeister; Carsten Forthmann; Christian Steinhauer; Thorben Dammeyer; Philip Tinnefeld
To the Editor: In recent years, the ability to validate microscopy techniques as well as distinguish instrument-specific from sample-specific error sources has not kept up with the pace of progress in fluorescence, and especially super-resolution, imaging. Commonly, new methods are demonstrated by imaging cellular filaments whose labeling and preparation cannot be easily reproduced. A desired validation standard requires, on one hand, structural control to position distinct marks at defined distances. On the other hand, the validation standard has to provide stoichiometric control, which implies the ability to place a defined number of molecules of equal brightness per mark. We present molecular rulers based on self-assembled DNA origami structures as a general and highly versatile platform for fluorescence and super-resolution standards. Examples include fluorescence brightness standards as well as standards covering a distance range from 6 to 386 nm that are adapted to the needs of the specific microscopy technique, including stimulated emission depletion (STED), localization-based super-resolution and diffractionlimited microscopy. Scaffolded DNA origamis are produced by hybridizing ~200 staple oligonucleotides to a long single-stranded DNA scaffold to yield a predefined shape1. DNA origamis can be labeled at specific sites with fluorescent dyes by using dye-modified staple strands (Supplementary Methods). For DNA origami brightness standards, we imaged rectangular DNA origamis (Fig. 1a) with 1–36 ATTO647N molecules (minimal interdye distance is 6 nm) immobilized on coverslips by fluorescence lifetime imaging.
Nature Protocols | 2014
Jürgen J. Schmied; Mario Raab; Carsten Forthmann; Enrico Pibiri; Bettina Wünsch; Thorben Dammeyer; Philip Tinnefeld
Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1–2 d.
Journal of Biological Chemistry | 2006
Thorben Dammeyer; Nicole Frankenberg-Dinkel
Phycoerythrobilin is a linear tetrapyrrole molecule found in cyanobacteria, red algae, and cryptomonads. Together with other bilins such as phycocyanobilin it serves as a light-harvesting pigment in the photosynthetic light-harvesting structures of cyanobacteria called phycobilisomes. The biosynthesis of both pigments starts with the cleavage of heme by heme oxygenases to yield biliverdin IXα, which is further reduced at specific positions by ferredoxin-dependent bilin reductases (FDBRs), a new family of radical enzymes. The biosynthesis of phycoerythrobilin requires two subsequent two-electron reductions, each step being catalyzed by one FDBR. This is in contrast to the biosynthesis of phycocyanobilin, where the FDBR phycocyanobilin: ferredoxin oxidoreductase (PcyA) catalyzes a four-electron reduction. The first reaction in phycoerythrobilin biosynthesis is the reduction of the 15,16-double bond of biliverdin IXα by 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA). This reaction reduces the conjugated π -electron system thereby blue-shifting the absorbance properties of the linear tetrapyrrole. The second FDBR, phycoerythrobilin:ferredoxin oxidoreductase (PebB), then reduces the A-ring 2,3,31,32-diene structure of 15,16-dihydrobiliverdin to yield phycoerythrobilin. Both FDBRs from the limnic filamentous cyanobacterium Fremyella diplosiphon and the marine cyanobacterium Synechococcus sp. WH8020 were recombinantly produced in Escherichia coli and purified, and their enzymatic activities were determined. By using various natural bilins, the substrate specificity of each FDBR was established, revealing conformational preconditions for their unique specificity. Preparation of the semi-reduced intermediate, 15,16-dihydrobiliverdin, enabled us to perform steady state binding experiments indicating distinct spectroscopic and fluorescent properties of enzyme·bilin complexes. A combination of substrate/product binding analyses and gel permeation chromatography revealed evidence for metabolic channeling.
Microbial Cell Factories | 2011
Thorben Dammeyer; Sarah-C Krüger; Stefan Dübel; Michael Hust; Kenneth N. Timmis
Recombinant antibody fragments have a wide range of applications from research to diagnostics and therapy. Of special interest are small fragments like fragment antigen binding (Fab) or single chain fragment variables (scFv) fragments as they can be produced inexpensively in bacterial expression systems. However, recombinant production efficiencies from established production hosts vary significantly leading to inadequate yields. Gene sequences that have been synthetically adapted to match the codon preferences and respective genomic tRNA pool of the host have been used to improve yields but cannot resolve the principal problem. The development of inducible broad host range scFv expression plasmid constructs leads the way to an easy and efficient screening method for the identification of the optimal bacterial expression host.BackgroundRecombinant antibody fragments have a wide range of applications in research, diagnostics and therapy. For many of these, small fragments like single chain fragment variables (scFv) function well and can be produced inexpensively in bacterial expression systems. Although Escherichia coli K-12 production systems are convenient, yields of different fragments, even those produced from codon-optimized expression systems, vary significantly. Where yields are inadequate, alternative production systems are needed. Pseudomonas putida strain KT2440 is a versatile biosafety strain known for good expression of heterologous genes, so we have explored its utility as a cell factory for production of scFvs.ResultsWe have generated new broad host range scFv expression constructs and assessed their production in the Pseudomonas putida KT2440 host. Two scFvs bind either to human C-reactive protein or to mucin1, proteins of significant medical diagnostic and therapeutic interest, whereas a third is a model anti-lysozyme scFv. The KT2440 antibody expression systems produce scFvs targeted to the periplasmic space that were processed precisely and were easily recovered and purified by single-step or tandem affinity chromatography. The influence of promoter system, codon optimization for P. putida, and medium on scFv yield was examined. Yields of up to 3.5 mg/l of pure, soluble, active scFv fragments were obtained from shake flask cultures of constructs based on the original codon usage and expressed from the Ptac expression system, yields that were 2.5-4 times higher than those from equivalent cultures of an E. coli K-12 expression host.ConclusionsPseudomonas putida KT2440 is a good cell factory for the production of scFvs, and the broad host range constructs we have produced allow yield assessment in a number of different expression hosts when yields in one initially selected are insufficient. High cell density cultivation and further optimization and refinement of the KT2440 cell factory will achieve additional increases in the yields of scFvs.
Journal of Biological Chemistry | 2008
Thorben Dammeyer; Eckhard Hofmann; Nicole Frankenberg-Dinkel
The reddish purple open chain tetrapyrrole pigment phycoerythrobilin (PEB; Aλmax ∼ 550 nm) is an essential chromophore of the light-harvesting phycobiliproteins of most cyanobacteria, red algae, and cryptomonads. The enzyme phycoerythrobilin synthase (PebS), recently discovered in a marine virus infecting oceanic cyanobacteria of the genus Prochlorococcus (cyanophage PSSM-2), is a new member of the ferredoxin-dependent bilin reductase (FDBR) family. In a formal four-electron reduction, the substrate biliverdin IXα is reduced to yield 3Z-PEB, a reaction that commonly requires the action of two individual FDBRs. The first reaction catalyzed by PebS is the reduction of the 15,16-methine bridge of the biliverdin IXα tetrapyrrole system. This reaction is exclusive to PEB biosynthetic enzymes. The second reduction site is the A-ring 2,3,31,32-diene system, the most common target of FDBRs. Here, we present the first crystal structures of a PEB biosynthetic enzyme. Structures of the substrate complex were solved at 1.8- and 2.1-Å resolution and of the substrate-free form at 1.55-Å resolution. The overall folding revealed an α/β/α-sandwich with similarity to the structure of phycocyanobilin:ferredoxin oxidoreductase (PcyA). The substrate-binding site is located between the central β-sheet and C-terminal α-helices. Eight refined molecules with bound substrate, from two different crystal forms, revealed a high flexibility of the substrate-binding pocket. The substrate was found to be either in a planar porphyrin-like conformation or in a helical conformation and is coordinated by a conserved aspartate/asparagine pair from the β-sheet side. From the α-helix side, a conserved highly flexible aspartate/proline pair is involved in substrate binding and presumably catalysis.
European Journal of Cell Biology | 2010
Jessica Wiethaus; Andrea W.U. Busch; Thorben Dammeyer; Nicole Frankenberg-Dinkel
Prochlorococcus sp. is a very unique and highly abundant class of organisms within the cyanobacteria. Found in the worlds oceans Prochlorococcus is very small in size and possesses the smallest genome of a photosynthetic autotroph. Prochlorococcus is characterized by a special chlorophyll antenna for light harvesting and the absence of classical cyanobacterial phycobilisomes. Despite the lack of phycobilisomes Prochlorococcus possesses remnants thereof which is the phycobiliprotein phycoerythrin (PE) encoded in a PE operon as well as genes encoding enzymes of phycobilin biosynthesis. The size of this PE operon varies depending on the light-adapted ecotype. While high-light strains only possess a β-subunit of PE, low-light adapted strains possess both, an α- and a β-subunit. α-/β-subunits are also present in functional phycobilisomes. Consistent with the number of subunits is also the varying number of putative lyase genes, involved in the transfer and attachment of phycobilins (open-chain tetrapyrroles) to the PE subunits. This minireview summarizes the only sparely available data on the biosynthesis and assembly of Prochlorococcus PE. On one hand the quite well understood biosynthesis of pigments will be reviewed but also new data on the phycobiliprotein lyase-mediated transfer of the phycobilins to the PE subunits will be discussed.
Computational and structural biotechnology journal | 2012
Thorben Dammeyer; Philip Tinnefeld
The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP), remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat) pathway, but actively fold in the periplasm following general secretory pathway (Sec) and signal recognition particle (SRP) mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.
Microbial Cell Factories | 2013
Thorben Dammeyer; Kenneth N. Timmis; Philip Tinnefeld
BackgroundIn current protein research, a limitation still is the production of active recombinant proteins or native protein associations to assess their function. Especially the localization and analysis of protein-complexes or the identification of modifications and small molecule interaction partners by co-purification experiments requires a controllable expression of affinity- and/or fluorescence tagged variants of a protein of interest in its native cellular background. Advantages of periplasmic and/or homologous expressions can frequently not be realized due to a lack of suitable tools. Instead, experiments are often limited to the heterologous production in one of the few well established expression strains.ResultsHere, we introduce a series of new RK2 based broad host range expression plasmids for inducible production of affinity- and fluorescence tagged proteins in the cytoplasm and periplasm of a wide range of Gram negative hosts which are designed to match the recently suggested modular Standard European Vector Architecture and database. The vectors are equipped with a yellow fluorescent protein variant which is engineered to fold and brightly fluoresce in the bacterial periplasm following Sec-mediated export, as shown from fractionation and imaging studies. Expression of Strep-tag®II and Twin-Strep-tag® fusion proteins in Pseudomonas putida KT2440 is demonstrated for various ORFs.ConclusionThe broad host range constructs we have produced enable good and controlled expression of affinity tagged protein variants for single-step purification and qualify for complex co-purification experiments. Periplasmic export variants enable production of affinity tagged proteins and generation of fusion proteins with a novel engineered Aequorea-based yellow fluorescent reporter protein variant with activity in the periplasm of the tested Gram-negative model bacteria Pseudomonas putida KT2440 and Escherichia coli K12 for production, localization or co-localization studies. In addition, the new tools facilitate metabolic engineering and yield assessment for cytoplasmic or periplasmic protein production in a number of different expression hosts when yields in one initially selected are insufficient.