Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorsten Peters is active.

Publication


Featured researches published by Thorsten Peters.


Journal of Clinical Investigation | 2011

An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice

Anca Sindrilaru; Thorsten Peters; Stefan Wieschalka; Corina Baican; Adrian Baican; Henriette Peter; Adelheid Hainzl; Susanne Schatz; Yu Qi; Andrea Schlecht; Johannes M. Weiss; Meinhard Wlaschek; Cord Sunderkötter; Karin Scharffetter-Kochanek

Uncontrolled macrophage activation is now considered to be a critical event in the pathogenesis of chronic inflammatory diseases such as atherosclerosis, multiple sclerosis, and chronic venous leg ulcers. However, it is still unclear which environmental cues induce persistent activation of macrophages in vivo and how macrophage-derived effector molecules maintain chronic inflammation and affect resident fibroblasts essential for tissue homeostasis and repair. We used a complementary approach studying human subjects with chronic venous leg ulcers, a model disease for macrophage-driven chronic inflammation, while establishing a mouse model closely reflecting its pathogenesis. Here, we have shown that iron overloading of macrophages--as was found to occur in human chronic venous leg ulcers and the mouse model--induced a macrophage population in situ with an unrestrained proinflammatory M1 activation state. Via enhanced TNF-α and hydroxyl radical release, this macrophage population perpetuated inflammation and induced a p16(INK4a)-dependent senescence program in resident fibroblasts, eventually leading to impaired wound healing. This study provides insight into the role of what we believe to be a previously undescribed iron-induced macrophage population in vivo. Targeting this population may hold promise for the development of novel therapies for chronic inflammatory diseases such as chronic venous leg ulcers.


Journal of Experimental Medicine | 2005

Role of β2-integrins for homing and neovascularization capacity of endothelial progenitor cells

Emmanouil Chavakis; Alexandra Aicher; Christopher Heeschen; Ken-ichiro Sasaki; Ralf Kaiser; Naual El Makhfi; Carmen Urbich; Thorsten Peters; Karin Scharffetter-Kochanek; Andreas M. Zeiher; Triantafyllos Chavakis; Stefanie Dimmeler

The mechanisms of homing of endothelial progenitor cells (EPCs) to sites of ischemia are unclear. Here, we demonstrate that ex vivo–expanded EPCs as well as murine hematopoietic Sca-1+/Lin− progenitor cells express β2-integrins, which mediate the adhesion of EPCs to endothelial cell monolayers and their chemokine-induced transendothelial migration in vitro. In a murine model of hind limb ischemia, Sca-1+/Lin− hematopoietic progenitor cells from β2-integrin–deficient mice are less capable of homing to sites of ischemia and of improving neovascularization. Preactivation of the β2-integrins expressed on EPCs by activating antibodies augments the EPC-induced neovascularization in vivo. These results provide evidence for a novel function of β2-integrins in postnatal vasculogenesis.


Journal of Clinical Investigation | 2006

Activated macrophages are essential in a murine model for T cell–mediated chronic psoriasiform skin inflammation

Honglin Wang; Thorsten Peters; Daniel Kess; Anca Sindrilaru; Tsvetelina Oreshkova; Nico van Rooijen; Athanasios Stratis; Andreas C. Renkl; Cord Sunderkötter; Meinhard Wlaschek; Ingo Haase; Karin Scharffetter-Kochanek

The CD18 hypomorphic (CD18hypo) PL/J mouse model clinically resembling human psoriasis is characterized by reduced expression of the common chain of beta2 integrins (CD11/CD18) to only 2-16% of WT levels. Previously we found that this chronic psoriasiform skin inflammation also depends on the presence of CD4+ T cells. Herein we investigated the role of macrophages in this CD18hypo mouse model. Activated macrophages were significantly increased in lesional skin as well as in inflamed skin draining lymph nodes (DLNs) of affected CD18hypo mice and were identified as being an important source of TNF-alpha in vivo. Both depletion of macrophages and neutralization of TNF-alpha resulted in a significant alleviation of psoriasiform skin inflammation. As monocyte chemotactic protein 1 was enhanced in lesional skin of affected CD18hypo mice, we intradermally injected recombinant murine monocyte chemotactic protein-1 (rJE/MCP-1) alone or in combination with rTNF-alpha into the skin of healthy CD18hypo mice. Only simultaneous injection of rJE/MCP-1 and rTNF-alpha, but neither substance alone, resulted in the induction of psoriasiform skin inflammation around the injection sites with recruitment and activation of macrophages. Collectively, our data suggest that maintenance of psoriasiform skin inflammation critically depends on efficient recruitment and activation of macrophages with sufficient release of TNF-alpha.


Journal of Clinical Investigation | 2006

Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation

Athanasios Stratis; Manolis Pasparakis; Rudolf A. Rupec; Doreen Markur; Karin Hartmann; Karin Scharffetter-Kochanek; Thorsten Peters; Nico van Rooijen; Thomas Krieg; Ingo Haase

Psoriasis is a common skin disease, the pathogenesis of which has not yet been resolved. In mice, epidermis-specific deletion of inhibitor of NF-kappaB (IkappaB) kinase 2 (IKK2) results in a skin phenotype that mimics human psoriasis in several aspects. Like psoriasis, this skin disease shows pronounced improvement when mice are treated with a TNF-neutralizing agent. We have found previously that this phenotype does not depend on the presence of alphabeta T lymphocytes. In order to evaluate contributions of other immune cell populations to the skin disease, we selectively eliminated macrophages and granulocytes from the skin of mice with epidermis-specific deletion of IKK2 (K14-Cre-IKK2fl/fl mice). Elimination of skin macrophages by subcutaneous injection of clodronate liposomes was accompanied by inhibition of granulocyte migration into the skin and resulted in a dramatic attenuation of psoriasis-like skin changes. The hyperproliferative, inflammatory skin disease in K14-Cre-IKK2fl/fl mice was a direct consequence of the presence of macrophages in the skin, as targeted deletion of CD18, which prevented accumulation of granulocytes but not macrophages, did not lead to major changes in the phenotype. Targeted deletion of the receptor for IFN-gamma revealed that the pathogenesis of the skin disease does not depend on classical IFN-gamma-mediated macrophage activation. Our results demonstrate that in mice epidermal keratinocytes can initiate a hyperproliferative, inflammatory, IFN-gamma-independent, psoriasis-like skin disease whose development requires essential contributions from skin macrophages but not from granulocytes or alphabeta T lymphocytes.


The EMBO Journal | 2005

Wound‐healing defect of CD18−/− mice due to a decrease in TGF‐β1 and myofibroblast differentiation

Thorsten Peters; Anca Sindrilaru; Boris Hinz; Ralf Hinrichs; Andre Menke; Ezz Al Din Al-Azzeh; Katrin Holzwarth; Tsvetelina Oreshkova; Honglin Wang; Daniel Kess; Barbara Walzog; Silke Sulyok; Cord Sunderkötter; Wilhelm Friedrich; Meinhard Wlaschek; Thomas Krieg; Karin Scharffetter-Kochanek

We studied the mechanisms underlying the severely impaired wound healing associated with human leukocyte‐adhesion deficiency syndrome‐1 (LAD1) using a murine disease model. In CD18−/− mice, healing of full‐thickness wounds was severely delayed during granulation‐tissue contraction, a phase where myofibroblasts play a major role. Interestingly, expression levels of myofibroblast markers α‐smooth muscle actin and ED‐A fibronectin were substantially reduced in wounds of CD18−/− mice, suggesting an impaired myofibroblast differentiation. TGF‐β signalling was clearly involved since TGF‐β1 and TGF‐β receptor type‐II protein levels were decreased, while TGF‐β1 injections into wound margins fully re‐established wound closure. Since, in CD18−/− mice, defective migration leads to a severe reduction of neutrophils in wounds, infiltrating macrophages might not phagocytose apoptotic CD18−/− neutrophils. Macrophages would thus be lacking their main stimulus to secrete TGF‐β1. Indeed, in neutrophil–macrophage cocultures, lack of CD18 on either cell type leads to dramatically reduced TGF‐β1 release by macrophages due to defective adhesion to, and subsequent impaired phagocytic clearance of, neutrophils. Our data demonstrates that the paracrine secretion of growth factors is essential for cellular differentiation in wound healing.


Journal of Clinical Investigation | 2002

β2 integrins are required for skin homing of primed T cells but not for priming naive T cells

Stephan Grabbe; Georg Varga; Stefan Beissert; Meike Steinert; Gunther Pendl; Stephan Seeliger; Wilhelm Bloch; Thorsten Peters; T. Schwarz; Cord Sunderkötter; Karin Scharffetter-Kochanek

Beta2 integrins are of critical importance for leukocyte extravasation through vascular endothelia and for T cell activation. To elucidate the role of beta2 integrins in T cell-mediated immune responses, allergic contact dermatitis (ACD), irritant dermatitis, and delayed-type hypersensitivity (DTH) were assessed in mice lacking the beta2 integrin subunit, CD18. ACD and DTH responses, but not edema formation, were severely suppressed in CD18(-/-) mice. Extravasation of CD18(-/-) T cells into eczematous skin lesions was greatly impaired, whereas migration of Langerhans cell precursors and dendritic cells was normal in CD18(-/-) mice. CD18(-/-)lymph nodes (LNs) contained an abnormal population of CD3(-)CD44(high) lymphocytes and showed evidence of widespread T cell activation. T cells from regional LNs of sensitized CD18(-/-) mice proliferated in response to hapten challenge, and subcutaneous injection of sensitized syngeneic LN cells directly into ears of hapten-challenged naive recipients restored the defective ACD in CD18(-/-) mice, suggesting that CD18 is not required for priming of naive T cells but is indispensable for T cell extravasation. Thus, a dysfunction of T cells, in addition to granulocytes, may contribute to the pathophysiology of leukocyte adhesion deficiency type I, which arises from mutations in the human CD18 gene.


Journal of Immunology | 2003

CD4+ T Cell-Associated Pathophysiology Critically Depends on CD18 Gene Dose Effects in a Murine Model of Psoriasis

Daniel Kess; Thorsten Peters; Jan Zamek; Claudia Wickenhauser; Samir Tawadros; Karin Loser; Georg Varga; Stephan Grabbe; Roswitha Nischt; Cord Sunderkötter; Werner Müller; Thomas Krieg; Karin Scharffetter-Kochanek

In a CD18 hypomorphic polygenic PL/J mouse model, the severe reduction of CD18 (β2 integrin) to 2–16% of wild-type levels leads to the development of a psoriasiform skin disease. In this study, we analyzed the influence of reduced CD18 gene expression on T cell function, and its contribution to the pathogenesis of this disease. Both CD4+ and CD8+ T cells were significantly increased in the skin of affected CD18 hypomorphic mice. But only depletion of CD4+ T cells, and not the removal of CD8+ T cells, resulted in a complete clearance of the psoriasiform dermatitis. This indicates a central role of CD4+ T cells in the pathogenesis of this disorder, further supported by the detection of several Th1-like cytokines released predominantly by CD4+ T cells. In contrast to the CD18 hypomorphic mice, CD18 null mutants of the same strain did not develop the psoriasiform dermatitis. This is in part due to a lack of T cell emigration from dermal blood vessels, as experimental allergic contact dermatitis could be induced in CD18 hypomorphic and wild-type mice, but not in CD18 null mutants. Hence, 2–16% of CD18 gene expression is obviously sufficient for T cell emigration driving the inflammatory phenotype in CD18 hypomorphic mice. Our data suggest that the pathogenic involvement of CD4+ T cells depends on a gene dose effect with a reduced expression of the CD18 protein in PL/J mice. This murine inflammatory skin model may also have relevance for human polygenic inflammatory diseases.


Blood | 2009

Wound healing defect of Vav3-/- mice due to impaired β2-integrin dependent macrophage phagocytosis of apoptotic neutrophils

Anca Sindrilaru; Thorsten Peters; Tsvetelina Oreshkova; Honglin Wang; Anne Gompf; Francesca Mannella; Meinhard Wlaschek; Cord Sunderkötter; Karl Lenhard Rudolph; Barbara Walzog; Xosé R. Bustelo; Klaus D. Fischer; Karin Scharffetter-Kochanek

Vav proteins are guanine-nucleotide exchange factors implicated in leukocyte functions by relaying signals from immune response receptors and integrins to Rho-GTPases. We here provide first evidence for a role of Vav3 for beta(2)-integrins-mediated macrophage functions during wound healing. Vav3(-/-) and Vav1(-/-)/Vav3(-/-) mice revealed significantly delayed healing of full-thickness excisional wounds. Furthermore, Vav3(-/-) bone marrow chimeras showed an identical healing defect, suggesting that Vav3 deficiency in leukocytes, but not in other cells, is causal for the impaired wound healing. Vav3 was required for the phagocytotic cup formation preceding macrophage phagocytosis of apoptotic neutrophils. Immunoprecipitation and confocal microscopy revealed Vav3 activation and colocalization with beta(2)-integrins at the macrophage membrane upon adhesion to ICAM-1. Moreover, local injection of Vav3(-/-) or beta(2)-integrin(CD18)(-/-) macrophages into wound margins failed to restore the healing defect of Vav3(-/-) mice, suggesting Vav3 to control the beta(2)-integrin-dependent formation of a functional phagocytic synapse. Impaired phagocytosis of apoptotic neutrophils by Vav3(-/-) macrophages was causal for their reduced release of active transforming growth factor (TGF)-beta(1), for decreased myofibroblasts differentiation and myofibroblast-driven wound contraction. TGF-beta(1) deficiency in Vav3(-/-) macrophages was causally responsible for the healing defect, as local injection of either Vav3-competent macrophages or recombinant TGF-beta(1) into wounds of Vav3(-/-) mice fully rescued the delayed wound healing.


Journal of Clinical Investigation | 2008

TGF-β–dependent suppressive function of Tregs requires wild-type levels of CD18 in a mouse model of psoriasis

Honglin Wang; Thorsten Peters; Anca Sindrilaru; Daniel Kess; Tsvetelina Oreshkova; Xue-Zhong Yu; Anne Seier; Heike A. Schreiber; Meinhard Wlaschek; Robert Blakytny; Jan Röhrbein; Guido Schulz; Johannes M. Weiss; Karin Scharffetter-Kochanek

Dysfunctional Tregs have been identified in individuals with psoriasis. However, their role in the pathogenesis of the disease remains unclear. Here we explored the effect of diminished CD18 (beta2 integrin) expression on the function of CD4+CD25+CD127(-) Tregs using the Cd18 hypomorphic (Cd18hypo) PL/J mouse model of psoriasis that closely resembles the human disease. We found that reduced CD18 expression impaired cell-cell contact between Tregs and DCs. This led to dysfunctional Tregs, which both failed to suppress the pathogenic T cells and promoted the onset and severity of the disease. This failure was TGF-beta-dependent, as Tregs derived from Cd18hypo PL/J mice had diminished TGF-beta1 expression. Adoptive transfer of Tregs expressing wild-type levels of CD18 into affected Cd18hypo PL/J mice resulted in a substantial improvement of the psoriasiform skin disease, which did not occur upon coinjection of the cells with TGF-beta-specific neutralizing antibody. Our data indicate a primary dysfunction of Cd18hypo Tregs, allowing subsequent hyperproliferation of pathogenic T cells in the Cd18hypo PL/J mouse model of psoriasis. This study may provide a step forward in our understanding of the unique role of CD18 expression levels in avoiding autoimmunity.


British Journal of Dermatology | 2002

Vascular endothelial growth factor causally contributes to the angiogenic response upon ultraviolet B irradiation in vivo

Ralf Blaudschun; Cord Sunderkötter; Peter Brenneisen; Ralf Hinrichs; Thorsten Peters; Lars-Alexander Schneider; Ziba Razi-Wolf; Nicolas Hunzelmann; Karin Scharffetter-Kochanek

Summary Background Ultraviolet (UV)‐B irradiation has been shown to be an inducer of vascular endothelial growth factor (VEGF) in primary keratinocytes and epidermal cell lines in vitro.

Collaboration


Dive into the Thorsten Peters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Honglin Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner Müller

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Varga

University of Münster

View shared research outputs
Researchain Logo
Decentralizing Knowledge