Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thuc P. Vo is active.

Publication


Featured researches published by Thuc P. Vo.


RSC Advances | 2015

Epoxy/graphene nanocomposites – processing and properties: a review

Jiacheng Wei; Thuc P. Vo; Fawad Inam

Graphene has recently attracted significant academic and industrial interest because of its excellent performance in mechanical, electrical and thermal applications. Graphene can significantly improve physical properties of epoxy at extremely small loading when incorporated appropriately. Herein, the structure, preparation and properties of epoxy/graphene nanocomposites are reviewed in general, along with detailed examples drawn from the key scientific literature. The modification of graphene and the utilization of these materials in the fabrication of nanocomposites with different processing methods have been explored. This review has been focused on the processing methods and mechanical, electrical, thermal, and fire retardant properties of the nanocomposites. The synergic effects of graphene and other fillers in epoxy matrix have been summarised as well.


Computer Methods in Applied Mechanics and Engineering | 2017

A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory

Hoang X. Nguyen; Tuan N. Nguyen; M. Abdel-Wahab; Stéphane Bordas; H. Nguyen-Xuan; Thuc P. Vo

The isogeometric analysis associated with a novel quasi-3D shear deformation theory is proposed to investigate size-dependent behaviours of functionally graded microplates. The modified couple stress theory with only one material length scale parameter is employed to effectively capture the size-dependent effects within the microplates. Meanwhile, the quasi-3D theory which is constructed from a novel seventh-order shear deformation refined plate theory with four unknowns is able to consider both shear deformations and thickness stretching effect without requiring shear correction factors. The NURBS-based isogeometric analysis is integrated to exactly describe the geometry and approximately calculate the unknown fields with higher-order derivative and continuity requirements. The proposed approach is successfully applied to study the static bending, free vibration and buckling responses of rectangular and circular functionally graded microplates with various types of boundary conditions in which some benchmark numerical examples are presented. A number of investigations are also conducted to illustrate the effects of the material length scale, material index, and aspect ratios on the responses of the microplates.


Journal of Nanomaterials | 2015

Graphene nanoplatelets in epoxy system: dispersion, reaggregation, and mechanical properties of nanocomposites

Jiacheng Wei; Rasheed Atif; Thuc P. Vo; Fawad Inam

The use of graphene nanocomposites in advanced applications has attracted much attention in recent years. However, in order to substitute traditional epoxy reinforcements with graphene, there are still some issues like dispersion, homogenization, and reaggregation. In this paper, graphene bundles dispersed in two-component epoxy system by bath sonication, dispersion state, and reaggregation behavior of graphene in this system have been studied. Light transmittance in ultraviolet-visible spectroscopy has been used to quantify the reaggregation by a series of controlled experiments. After 18 mins sonication of 0.005 wt% graphene dispersion at 20°C, the light transmittance decreased from 68.92% to 54.88% in liquid epoxy and decreased from 72.80% to 46.42% in hardener; while increasing the temperature from 20°C to 60°C, the light transmittance in liquid epoxy decreased from 65.96% to 53.21% after 6 mins sonication. With the incorporation of 0.3 wt% graphene, the tensile strength of nanocomposites increased from 57.2MPa to 64.4MPa and the storage modulus increased from 1.66GPa to 2.16GPa. The results showed that the dispersion state depends on the function of sonication time and temperature, and graphene has a significant reinforcement effect on epoxy.


Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | 2014

Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory

Trung-Kien Nguyen; Thuc P. Vo; Huu-Tai Thai

An improved transverse shear stiffness for vibration and buckling analysis of functionally graded sandwich plates based on the first-order shear deformation theory is proposed in this paper. The transverse shear stress obtained from the in-plane stress and equilibrium equation allows to analytically derive an improved transverse shear stiffness and associated shear correction factor of the functionally graded sandwich plate. Sandwich plates with functionally graded faces and both homogeneous hardcore and softcore are considered. The material property is assumed to be isotropic at each point and vary through the plate thickness according to a power-law distribution of the volume fraction of the constituents. Equations of motion and boundary conditions are derived from Hamilton’s principle. The Navier-type solutions are obtained for simply supported boundary conditions, and exact formulae are proposed and compared with the existing solutions to verify the validity of the developed model. Numerical results are obtained for simply supported functionally graded sandwich plates made of three sets of material combinations of metal and ceramic, Al/Al2O3, Al/SiC and Al/WC to investigate the effects of the power-law index, thickness ratio of layer, material contrast on the shear correction factors, natural frequencies and critical buckling loads as well as load–frequency curves.


Journal of Sandwich Structures and Materials | 2016

Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories

Adelaja Israel Osofero; Thuc P. Vo; Trung-Kien Nguyen; Jaehong Lee

This paper presents an analytical solution for vibration and buckling of functionally graded (FG) sandwich beams using various quasi-3D theories, which consider effects of both shear and normal deformation. Sandwich beams with FG skins–homogeneous core and homogeneous skins–FG core are considered. By using the Hamilton’s principle, governing equations of motion are derived. An analytical solution is presented, and the obtained results by various quasi-3D theories are compared with each other and with the available solutions in the literature. The effects of normal strain, power-law indexes, skin–core–skin thickness and slenderness ratios on vibration and buckling behaviour of sandwich beams are investigated.


Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | 2014

A nonlocal sinusoidal plate model for micro/nanoscale plates

Huu-Tai Thai; Thuc P. Vo; Trung-Kien Nguyen; Jaehong Lee

A nonlocal sinusoidal plate model for micro/nanoscale plates is developed based on Eringen’s nonlocal elasticity theory and sinusoidal shear deformation plate theory. The small-scale effect is considered in the former theory while the transverse shear deformation effect is included in the latter theory. The proposed model accounts for sinusoidal variations of transverse shear strains through the thickness of the plate, and satisfies the stress-free boundary conditions on the plate surfaces, thus a shear correction factor is not required. Equations of motion and boundary conditions are derived from Hamilton’s principle. Analytical solutions for bending, buckling, and vibration of simply supported plates are presented, and the obtained results are compared with the existing solutions. The effects of small scale and shear deformation on the responses of the micro/nanoscale plates are investigated.


Journal of Composite Materials | 2013

Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study

Fawad Inam; Thuc P. Vo; Jonathan P Jones; Xu Lee

Batches of multi-walled carbon nanotubes having an average length of 2091 nm were aggressively tip-ultrasonicated to produce shortened carbon nanotubes having average lengths of 1689 nm, 1332 nm, 992 nm and 503 nm. Raman spectroscopic analysis confirmed that the shortened carbon nanotubes retained their crystallinity after the shortening process. Carbon nanotubes were then dispersed in the epoxy matrix using high-shear mixing technique (calendering). The mechanical properties were measured for the cured epoxy–0.1 wt% carbon nanotube nanocomposites having carbon nanotubes of different lengths. It was found that the nanocomposites containing long carbon nanotubes (2091 nm and 1689 nm) possess higher tensile strength, elastic modulus, fracture strain and fracture toughness as compared to nanocomposites containing short carbon nanotubes (1332 nm, 992 nm and 503 nm).


Royal Society Open Science | 2017

Dichlorobenzene: an effective solvent for epoxy/graphene nanocomposites preparation

Jiacheng Wei; Mohd Shahneel Saharudin; Thuc P. Vo; Fawad Inam

It is generally recognized that dimethylformamide (DMF) and ethanol are good media to uniformly disperse graphene, and therefore have been used widely in the preparation of epoxy/graphene nanocomposites. However, as a solvent to disperse graphene, dichlorobenzene (DCB) has not been fully realized by the polymer community. Owing to high values of the dispersion component (δd) of the Hildebrand solubility parameter, DCB is considered as a suitable solvent for homogeneous graphene dispersion. Therefore, epoxy/graphene nanocomposites have been prepared for the first time with DCB as a dispersant; DMF and ethanol have been chosen as the reference. The colloidal stability, mechanical properties, thermogravimetric analysis, dynamic mechanical analysis and scanning electron microscopic images of nanocomposites have been obtained. The results show that with the use of DCB, the tensile strength of graphene has been improved from 64.46 to 69.32 MPa, and its flexural strength has been increased from 97.17 to 104.77 MPa. DCB is found to be more effective than DMF and ethanol for making stable and homogeneous graphene dispersion and composites.


Journal of Reinforced Plastics and Composites | 2018

Effects of surfactants on the properties of epoxy/graphene nanocomposites:

Jiacheng Wei; Mohd Shahneel Saharudin; Thuc P. Vo; Fawad Inam

Recently, graphene has attracted extensive research interests due to its superior mechanical, electrical and thermal performance. Small loadings of graphene can increase the properties of epoxy significantly. However, because of the large surface area of graphene, it is a challenge to disperse graphene in liquid epoxy. Strong van der Waals force causes reaggregation of graphene in the matrix. As commonly used surfactants, sodium dodecyl sulphate and gum arabic have been used a lot to de-bundle graphene, however, their dispersing efficiencies for graphene in epoxy matrix is unknown. Therefore, to evaluate their dispersing efficiencies, epoxy/graphene nanocomposites had been made and mechanical properties, dynamic mechanical analysis, thermal gravimetric analysis and scanning electron microscopy tests of nanocomposites had been conducted. The results show that the properties of nanocomposites had been enhanced largely after using sodium dodecyl sulphate and gum arabic. Sodium dodecyl sulphate shows higher dispersing effectiveness than gum arabic.


International Journal of Structural Stability and Dynamics | 2018

Ritz-Based Analytical Solutions for Bending, Buckling and Vibration Behavior of Laminated Composite Beams

Ngoc-Duong Nguyen; Trung-Kien Nguyen; Thuc P. Vo; Huu-Tai Thai

In this paper, the Ritz-based solutions are developed for the bending, buckling and vibration behaviors of laminated composite beams with arbitrary lay-ups. A quasi-3D theory, which accounts for a higher-order variation of both the axial and transverse displacements, is used to capture the effects of both shear and normal deformations on the behaviors of composite beams. Numerical results for various boundary conditions are presented and compared with existing ones available in the literature. Besides, the effects of fiber angle, span-to-height ratio, material anisotropy and Poisson’s ratio on the displacements, stresses, natural frequencies and buckling loads of the composite beams are investigated.

Collaboration


Dive into the Thuc P. Vo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trung-Kien Nguyen

Ho Chi Minh City University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fawad Inam

Northumbria University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge