Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thurl E. Harris is active.

Publication


Featured researches published by Thurl E. Harris.


Cell | 2011

mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway

Timothy R. Peterson; Shomit Sengupta; Thurl E. Harris; Anne E. Carmack; Seong A. Kang; Eric Balderas; David A. Guertin; Katherine L. Madden; Anne E. Carpenter; Brian N. Finck; David M. Sabatini

The nutrient- and growth factor-responsive kinase mTOR complex 1 (mTORC1) regulates many processes that control growth, including protein synthesis, autophagy, and lipogenesis. Through unknown mechanisms, mTORC1 promotes the function of SREBP, a master regulator of lipo- and sterolgenic gene transcription. Here, we demonstrate that mTORC1 regulates SREBP by controlling the nuclear entry of lipin 1, a phosphatidic acid phosphatase. Dephosphorylated, nuclear, catalytically active lipin 1 promotes nuclear remodeling and mediates the effects of mTORC1 on SREBP target gene, SREBP promoter activity, and nuclear SREBP protein abundance. Inhibition of mTORC1 in the liver significantly impairs SREBP function and makes mice resistant, in a lipin 1-dependent fashion, to the hepatic steatosis and hypercholesterolemia induced by a high-fat and -cholesterol diet. These findings establish lipin 1 as a key component of the mTORC1-SREBP pathway.


Journal of Biological Chemistry | 2007

PRAS40 Regulates mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding

Lifu Wang; Thurl E. Harris; Richard A. Roth; John C. Lawrence

Mammalian target of rapamycin (mTOR) functions in two distinct signaling complexes, mTORC1 and mTORC2. In response to insulin and nutrients, mTORC1, consisting of mTOR, raptor (regulatory-associated protein of mTOR), and mLST8, is activated and phosphorylates eukaryotic initiation factor 4E-binding protein (4EBP) and p70 S6 kinase to promote protein synthesis and cell size. Previously we found that activation of mTOR kinase in response to insulin was associated with increased 4EBP1 binding to raptor. Here we identify prolinerich Akt substrate 40 (PRAS40) as a binding partner for mTORC1. A putative TOR signaling motif, FVMDE, is identified in PRAS40 and shown to be required for interaction with raptor. Insulin stimulation markedly decreases the level of PRAS40 bound by mTORC1. Recombinant PRAS40 inhibits mTORC1 kinase activity in vivo and in vitro, and this inhibition depends on PRAS40 association with raptor. Furthermore, decreasing PRAS40 expression by short hairpin RNA enhances 4E-BP1 binding to raptor, and recombinant PRAS40 competes with 4E-BP1 binding to raptor. We, therefore, propose that PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.


Diabetes | 2010

Fat Cell–Specific Ablation of Rictor in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism

Anil Kumar; John C. Lawrence; Dae Young Jung; Hwi Jin Ko; Susanna R. Keller; Jason K. Kim; Mark A. Magnuson; Thurl E. Harris

OBJECTIVE Rictor is an essential component of mammalian target of rapamycin (mTOR) complex (mTORC) 2, a kinase that phosphorylates and activates Akt, an insulin signaling intermediary that regulates glucose and lipid metabolism in adipose tissue, skeletal muscle, and liver. To determine the physiological role of rictor/mTORC2 in insulin signaling and action in fat cells, we developed fat cell–specific rictor knockout (FRic−/−) mice. RESEARCH DESIGN AND METHODS Insulin signaling and glucose and lipid metabolism were studied in FRic−/− fat cells. In vivo glucose metabolism was evaluated by hyperinsulinemic-euglycemic clamp. RESULTS Loss of rictor in fat cells prevents insulin-stimulated phosphorylation of Akt at S473, which, in turn, impairs the phosphorylation of downstream targets such as FoxO3a at T32 and AS160 at T642. However, glycogen synthase kinase-3β phosphorylation at S9 is not affected. The signaling defects in FRic−/− fat cells lead to impaired insulin-stimulated GLUT4 translocation to the plasma membrane and decreased glucose transport. Furthermore, rictor-null fat cells are unable to suppress lipolysis in response to insulin, leading to elevated circulating free fatty acids and glycerol. These metabolic perturbations are likely to account for defects observed at the whole-body level of FRic−/− mice, including glucose intolerance, marked hyperinsulinemia, insulin resistance in skeletal muscle and liver, and hepatic steatosis. CONCLUSIONS Rictor/mTORC2 in fat cells plays an important role in whole-body energy homeostasis by mediating signaling necessary for the regulation of glucose and lipid metabolism in fat cells.


Journal of Biological Chemistry | 2007

Insulin Controls Subcellular Localization and Multisite Phosphorylation of the Phosphatidic Acid Phosphatase, Lipin 1

Thurl E. Harris; Todd A. Huffman; An Chi; Jeffrey Shabanowitz; Donald F. Hunt; Anil Kumar; John C. Lawrence

Brain, liver, kidney, heart, and skeletal muscle from fatty liver dystrophy (fld/fld) mice, which do not express lipin 1 (lipin), contained much less Mg2+-dependent phosphatidic acid phosphatase (PAP) activity than tissues from wild type mice. Lipin harboring the fld2j (Gly84 → Arg) mutation exhibited relatively little PAP activity. These results indicate that lipin is a major PAP in vivo and that the loss of PAP activity contributes to the fld phenotype. PAP activity was readily detected in immune complexes of lipin from 3T3-L1 adipocytes, where the protein was found both as a microsomal form and a soluble, more highly phosphorylated, form. Fifteen phosphorylation sites were identified by mass spectrometric analyses. Insulin increased the phosphorylation of multiple sites and promoted a gel shift that was due in part to phosphorylation of Ser106. In contrast, epinephrine and oleic acid promoted dephosphorylation of lipin. The PAP-specific activity of lipin was not affected by the hormones or by dephosphorylation of lipin with protein phosphatase 1. However, the ratio of soluble to microsomal lipin was markedly increased in response to insulin and decreased in response to epinephrine and oleic acid. The results suggest that insulin and epinephrine control lipin primarily by changing localization rather than intrinsic PAP activity.


Molecular and Cellular Biology | 2008

Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity.

Anil Kumar; Thurl E. Harris; Susanna R. Keller; Kin M. Choi; Mark A. Magnuson; John C. Lawrence

ABSTRACT Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle from male rictor knockout mice exhibited decreased insulin-stimulated glucose uptake, and the mice showed glucose intolerance. In muscle lacking rictor, the phosphorylation of Akt at Ser473 was reduced dramatically in response to insulin. Furthermore, insulin-stimulated phosphorylation of the Akt substrate AS160 at Thr642 was reduced in rictor knockout muscle, indicating a defect in insulin signaling to stimulate glucose transport. However, the phosphorylation of Akt at Thr308 was normal and sufficient to mediate the phosphorylation of glycogen synthase kinase 3 (GSK-3). Basal glycogen synthase activity in muscle lacking rictor was increased to that of insulin-stimulated controls. Consistent with this, we observed a decrease in basal levels of phosphorylated glycogen synthase at a GSK-3/protein phosphatase 1 (PP1)-regulated site in rictor knockout muscle. This change in glycogen synthase phosphorylation was associated with an increase in the catalytic activity of glycogen-associated PP1 but not increased GSK-3 inactivation. Thus, rictor in muscle tissue contributes to glucose homeostasis by positively regulating insulin-stimulated glucose uptake and negatively regulating basal glycogen synthase activity.


Journal of Biological Chemistry | 2008

Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation.

Lifu Wang; Thurl E. Harris; John C. Lawrence

The rapamycin-sensitive mammalian target of rapamycin (mTOR) complex 1 (mTORC1) contains mTOR, raptor, mLST8, and PRAS40 (proline-rich Akt substrate of 40 kDa). PRAS40 functions as a negative regulator when bound to mTORC1, and it dissociates from mTORC1 in response to insulin. PRAS40 has been demonstrated to be a substrate of mTORC1, and one phosphorylation site, Ser-183, has been identified. In this study, we used two-dimensional phosphopeptide mapping in conjunction with mutational analysis to show that in addition to Ser-183, mTORC1 also phosphorylates Ser-212 and Ser-221 in PRAS40 when assayed in vitro. Mutation of all three residues to Ala markedly reduces mTORC1-mediated phosphorylation of PRAS40 in vitro. All three sites were confirmed to be phosphorylated in vivo by [32P]orthophosphate labeling and peptide mapping. Phosphorylation of Ser-221 and Ser-183 but not Ser-212 is sensitive to rapamycin treatment. Furthermore, we demonstrate that mutation of Ser-221 to Ala reduces the interaction with 14-3-3 to the same extent as mutation of Thr-246, the Akt/protein kinase B-phosphorylated site. We also find that mutation of Ser-221 to Ala increases the inhibitory activity of PRAS40 toward mTORC1. We propose that after mTORC1 kinase activation by upstream regulators, PRAS40 is phosphorylated directly by mTOR, thus contributing to the relief of PRAS40-mediated substrate competition.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A conserved phosphatase cascade that regulates nuclear membrane biogenesis

Youngjun Kim; Matthew S. Gentry; Thurl E. Harris; Sandra E. Wiley; John C. Lawrence; Jack E. Dixon

A newly emerging family of phosphatases that are members of the haloacid dehalogenase superfamily contains the catalytic motif DXDX(T/V). A member of this DXDX(T/V) phosphatase family known as Dullard was recently shown to be a potential regulator of neural tube development in Xenopus [Satow R, Chan TC, Asashima M (2002) Biochem Biophys Res Commun 295:85–91]. Herein, we demonstrate that human Dullard and the yeast protein Nem1p perform similar functions in mammalian cells and yeast cells, respectively. In addition to similarity in primary sequence, Dullard and Nem1p possess similar domains and show similar substrate preferences, and both localize to the nuclear envelope. Additionally, we show that human Dullard can rescue the aberrant nuclear envelope morphology of nem1Δ yeast cells, functionally replacing Nem1p. Finally, Nem1p, has been shown to deposphorylate the yeast phosphatidic acid phosphatase Smp2p [Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S (2005) EMBO J 24:1931–1941], and we show that Dullard dephosphorylates the mammalian phospatidic acid phosphatase, lipin. Therefore, we propose that Dullard participates in a unique phosphatase cascade regulating nuclear membrane biogenesis, and that this cascade is conserved from yeast to mammals.


The EMBO Journal | 2006

mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin

Thurl E. Harris; An Chi; Jeffrey Shabanowitz; Donald F. Hunt; Robert E. Rhoads; John C. Lawrence

Insulin stimulates protein synthesis by increasing translation initiation. This response is mediated by mTOR and is believed to result from 4EBP1 phosphorylation, which allows eIF4E to bind eIF4G. Here, we present evidence that mTOR interacts directly with eIF3 and that mTOR controls the association of eIF3 and eIF4G. Activating mTOR signaling with insulin increased by as much as five‐fold the amount of eIF4G bound to eIF3. This novel effect was blocked by rapamycin and other inhibitors of mTOR, and it required neither eIF4E binding to eIF4G nor eIF3 binding to the 40S ribosomal subunit. The increase in eIF4G associated with eIF3 occurred rapidly and at physiological concentrations of insulin. Moreover, the magnitude of the response was similar to the increase in eIF4E binding to eIF4G produced by insulin. Thus, increasing eIF4G association with eIF3 represents a potentially important mechanism by which insulin, as well as amino acids and growth factors that activate mTOR, stimulate translation.


Trends in Endocrinology and Metabolism | 2011

Dual function lipin proteins and glycerolipid metabolism

Thurl E. Harris; Brian N. Finck

Lipin family proteins are emerging as crucial regulators of lipid metabolism. In triglyceride synthesis, lipins act as lipid phosphatase enzymes at the endoplasmic reticular membrane, catalyzing the dephosphorylation of phosphatidic acid to form diacylglycerol, which is the penultimate step in this process. However, lipin proteins are not integral membrane proteins, and can rapidly translocate within the cell. In fact, emerging evidence suggests that lipins also play crucial roles in the nucleus as transcriptional regulatory proteins. Thus, lipins are poised to regulate cellular lipid metabolism at multiple regulatory nodal points. This review summarizes the history of lipin proteins, and discusses the current state of our understanding of lipin biology.


Cancer Biology & Therapy | 2009

PIM1 Protein Kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells

Fengxue Zhang; Zanna Beharry; Thurl E. Harris; Michael B. Lilly; Charles D. Smith; Sandeep Mahajan; Andrew S. Kraft

PIM1 is a serine /threonine kinase that has diverse biological roles in cell survival, proliferation and differentiation. PIM1 has been implicated in early transformation and tumor progression in haematopoietic malignancies and prostate carcinomas. The ability of PIM1 to regulate these processes is thought to be in part secondary to its activity in stimulating 4EBP1 phosphorylation and enhancement of protein synthesis. Because 4EBP1 is an mTOR substrate, we have investigated how PIM1 might regulate this latter enzyme. We have examined the ability of PIM1 to modulate PRAS40, a protein known to negatively regulate mTOR activity in FDP1 cells. Upon phosphorylation, PRAS40 dissociates from the mTOR complex and increases mTOR kinase activity. We find that enforced overexpression of PIM1 increases PRAS40 phosphorylation at Thr246, an AKT phosphorylation site, whether grown in complete media or deprived of IL-3 and serum. The increase in PRAS40 phosphorylation was independent of AKT activation and not inhibited by wortmannin. In vitro kinase assays indicate that the PIM1 protein kinase is capable of directly phosphorylating Thr246 in PRAS40. PIM1 protein kinase overexpression reduced the association of PRAS40 with mTOR, and increased the mTOR directed phosphorylation of 4EBP1 and p70S6Kinase. Treatment of FDCP1 cells transfected with PIM1 (FD/mpim44) with small molecule inhibitors of PIM1 kinase activity reduced both PRAS40 and 4EBP1 phosphorylation. These results suggest that PIM1 regulates mTOR activity through phosphorylation of PRAS40. Thus, increases in mTOR activity mediated by the PIM protein kinase may have the potential to control cell growth.

Collaboration


Dive into the Thurl E. Harris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian N. Finck

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lifu Wang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vidisha Raje

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Kumar

Birla Institute of Technology and Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge