Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Purow is active.

Publication


Featured researches published by Benjamin Purow.


Cancer Research | 2008

microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma

Benjamin Kefas; Jakub Godlewski; Laurey Comeau; Yunqing Li; Roger Abounader; Michael P. Hawkinson; Jeongwu Lee; Howard A. Fine; E. Antonio Chiocca; Sean E. Lawler; Benjamin Purow

microRNAs are noncoding RNAs inhibiting expression of numerous target genes, and a few have been shown to act as oncogenes or tumor suppressors. We show that microRNA-7 (miR-7) is a potential tumor suppressor in glioblastoma targeting critical cancer pathways. miR-7 potently suppressed epidermal growth factor receptor expression, and furthermore it independently inhibited the Akt pathway via targeting upstream regulators. miR-7 expression was down-regulated in glioblastoma versus surrounding brain, with a mechanism involving impaired processing. Importantly, transfection with miR-7 decreased viability and invasiveness of primary glioblastoma lines. This study establishes miR-7 as a regulator of major cancer pathways and suggests that it has therapeutic potential for glioblastoma.


Cell Cycle | 2010

microRNA-34a is tumor suppressive in brain tumors and glioma stem cells

Fadila Guessous; Ying Zhang; Alexander Kofman; Alessia Catania; Yunqing Li; David Schiff; Benjamin Purow; Roger Abounader

We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.


The Journal of Neuroscience | 2009

The neuronal microRNA miR-326 acts in a feedback loop with Notch and has therapeutic potential against brain tumors

Benjamin Kefas; Laurey Comeau; Desiree H. Floyd; Oleksandr Seleverstov; Jakub Godlewski; Tom Schmittgen; Jinmai Jiang; Charles G. diPierro; Yunqing Li; E. Antonio Chiocca; Jeongwu Lee; Howard A. Fine; Roger Abounader; Sean E. Lawler; Benjamin Purow

Little is known of microRNA interactions with cellular pathways. Few reports have associated microRNAs with the Notch pathway, which plays key roles in nervous system development and in brain tumors. We previously implicated the Notch pathway in gliomas, the most common and aggressive brain tumors. While investigating Notch mediators, we noted microRNA-326 was upregulated following Notch-1 knockdown. This neuronally expressed microRNA was not only suppressed by Notch but also inhibited Notch proteins and activity, indicating a feedback loop. MicroRNA-326 was downregulated in gliomas via decreased expression of its host gene. Transfection of microRNA-326 into both established and stem cell-like glioma lines was cytotoxic, and rescue was obtained with Notch restoration. Furthermore, miR-326 transfection reduced glioma cell tumorigenicity in vivo. Additionally, we found microRNA-326 partially mediated the toxic effects of Notch knockdown. This work demonstrates a microRNA-326/Notch axis, shedding light on the biology of Notch and suggesting microRNA-326 delivery as a therapy.


Neuro-oncology | 2010

Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells

Benjamin Kefas; Laurey Comeau; Nicholas Erdle; Emmitt Montgomery; Samson Amos; Benjamin Purow

Emerging studies have identified microRNAs (miRNAs) as possible therapeutic tools for the treatment of glioma, the most aggressive brain tumor. Their important targets in this tumor are not well understood. We recently found that the Notch pathway is a target of miRNA-326. Ectopic expression of miRNA-326 in glioma and glioma stem cells induced their apoptosis and reduced their metabolic activity. Computational target gene prediction revealed pyruvate kinase type M2 (PKM2) as another target of miRNA-326. PKM2 has recently been shown to play a key role in cancer cell metabolism. To investigate whether it might be a functionally important target of miR-326, we used RNA interference to knockdown PKM2 expression in glioma cells. Transfection of the established glioma and glioma stem cells with PKM2 siRNA reduced their growth, cellular invasion, metabolic activity, ATP and glutathione levels, and activated AMP-activated protein kinase. The cytotoxic effects exhibited by PKM2 knockdown in glioma and glioma stem cells were not observed in transformed human astrocytes. Western blot analysis of human glioblastoma specimens showed high levels of PKM2 protein, but none was observed in normal brain samples. Strikingly, cells with high levels of PKM2 expressed lower levels of miR-326, suggestive of endogenous regulation of PKM2 by miR-326. Our data suggest PKM2 inhibition as a therapy for glioblastoma, with the potential for minimal toxicity to the brain.


Advances in Experimental Medicine and Biology | 2012

NOTCH INHIBITION AS A PROMISING NEW APPROACH TO CANCER THERAPY

Benjamin Purow

The Notch pathway powerfully influences stem cell maintenance, development and cell fate and is increasingly recognized for the key roles it plays in cancer. Notch promotes cell survival, angiogenesis and treatment resistance in numerous cancers, making it a promising target for cancer therapy. It also crosstalks with other critical oncogenes, providing a means to affect numerous signaling pathways with one intervention. While the gamma-secretase inhibitors are the only form of Notch inhibitors in clinical trials, other forms of Notch inhibition have been developed or are theoretically feasible. In this chapter we review the rationales for Notch inhibition in cancer and then discuss in detail the various modalities for Notch inhibition, both current and speculative.


Carcinogenesis | 2008

Notch-1 regulates transcription of the epidermal growth factor receptor through p53

Benjamin Purow; Tilak K. Sundaresan; Michael J. Burdick; Benjamin Kefas; Laurey Comeau; Michael P. Hawkinson; Qin Su; Yuri Kotliarov; Jeongwu Lee; Wei Zhang; Howard A. Fine

The Notch pathway plays a key role in the development and is increasingly recognized for its importance in cancer. We demonstrated previously the overexpression of Notch-1 and its ligands in gliomas and showed that their knockdown inhibits glioma cell proliferation and survival. To elucidate the mechanisms downstream of Notch-1 in glioma cells, we performed microarray profiling of glioma cells transfected with Notch-1 small interfering RNA. Notable among downregulated transcripts was the epidermal growth factor receptor (EGFR), known to be overexpressed or amplified in gliomas and prominent in other cancers as well. Further studies confirmed that Notch-1 inhibition decreased EGFR messenger RNA (mRNA) and EGFR protein in glioma and other cell lines. Transfection with Notch-1 increased EGFR expression. Additionally, we found a significant correlation in levels of EGFR and Notch-1 mRNA in primary high-grade human gliomas. Subsequent experiments showed that p53, an activator of the EGFR promoter, is regulated by Notch-1. Experiments with p53-positive and -null cell lines confirmed that p53 partially mediates the effects of Notch-1 on EGFR expression. These results show for the first time that Notch-1 upregulates EGFR expression and also demonstrate Notch-1 regulation of p53 in gliomas. These observations have significant implications for understanding the mechanisms of Notch in cancer and development.


Nature Reviews Neurology | 2009

Advances in the genetics of glioblastoma: are we reaching critical mass?

Benjamin Purow; David Schiff

Glioblastoma is the most common and highest-grade brain tumor, causing over 10,000 deaths each year in the US alone. Given the resistance of this tumor to standard surgery, radiation and chemotherapy, an understanding of the underlying genetic lesions is vital. Recent efforts to comprehensively profile glioblastomas using the latest technologies, both by The Cancer Genome Atlas (TCGA) project and by other groups, are addressing this need. Some genetic aberrations in glioblastoma have been known for decades, but early output from the new profiling initiatives has further illuminated the relevant genetics in this disease. Some genetic lesions, such as TP53 mutation, NF1 deletion or mutation, and ERBB2 amplification, have been found to be more common than was previously reported. New and unexpected discoveries have also been made, such as frequent mutations of the IDH1 and IDH2 genes in secondary glioblastoma. We might be tempted to speculate that we are approaching a comprehensive knowledge of the genetic lesions involved in glioblastoma, although other major discoveries doubtless remain to be made. In addition, the complex task of incorporating our updated knowledge into new—and possibly personalized—therapies for patients with glioblastoma still lies ahead.


Neuro-oncology | 2015

Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma

Thomas Kaley; Patrick Y. Wen; David Schiff; Keith L. Ligon; Sam Haidar; Sasan Karimi; Andrew B. Lassman; Craig Nolan; Lisa M. DeAngelis; Igor T. Gavrilovic; Andrew D. Norden; Jan Drappatz; Eudocia Q. Lee; Benjamin Purow; Scott R. Plotkin; Tracy T. Batchelor; Lauren E. Abrey; Antonio Omuro

BACKGROUND No proven effective medical therapy for surgery and radiation-refractory meningiomas exists. Sunitinib malate (SU011248) is a small-molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor, abundant in meningiomas. METHODS This was a prospective, multicenter, investigator-initiated single-arm phase II trial. The primary cohort enrolled patients with surgery and radiation-refractory recurrent World Health Organization (WHO) grades II-III meningioma. An exploratory cohort enrolled patients with WHO grade I meningioma, hemangiopericytoma, or hemangioblastoma. Sunitinib was administered at 50 mg/d for days 1-28 of every 42-day cycle. The primary endpoint was the rate of 6-month progression-free survival (PFS6), with secondary endpoints of radiographic response rate, safety, PFS, and overall survival. Exploratory objectives include analysis of tumoral molecular markers and MR perfusion imaging. RESULTS Thirty-six patients with high-grade meningioma (30 atypical and 6 anaplastic) were enrolled. Patients were heavily pretreated (median number of 5 recurrences, range 2-10). PFS6 rate was 42%, meeting the primary endpoint. Median PFS was 5.2 months (95% CI: 2.8-8.3 mo), and median overall survival was 24.6 months (95% CI: 16.5-38.4 mo). Thirteen patients enrolled in the exploratory cohort. Overall toxicity included 1 grade 5 intratumoral hemorrhage, 2 grade 3 and 1 grade 4 CNS/intratumoral hemorrhages, 1 grade 3 and 1 grade 4 thrombotic microangiopathy, and 1 grade 3 gastrointestinal perforation. Expression of VEGFR2 predicted PFS of a median of 1.4 months in VEGFR2-negative patients versus 6.4 months in VEGFR2-positive patients (P = .005). CONCLUSION Sunitinib is active in recurrent atypical/malignant meningioma patients. A randomized trial should be performed.


PLOS Computational Biology | 2012

Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma

Jingchun Sun; Xue Gong; Benjamin Purow; Zhongming Zhao

Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors (TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies, demonstrates that our network-based approach is promising for the identification of new and important miRNAs in GBM and, potentially, other cancers.


Journal of Neuro-oncology | 2013

Oncogenic effects of miR-10b in glioblastoma stem cells

Fadila Guessous; Melissa Alvarado-Velez; Lukasz Marcinkiewicz; Ying Zhang; Jungeun Kim; Simon Heister; Benjamin Kefas; Jakub Godlewski; David Schiff; Benjamin Purow; Roger Abounader

MicroRNAs and cancer stem cells have emerged as critical players in glioblastoma, one of the deadliest human cancers. In this study, we investigated the expression and function of microRNA-10b in glioblastoma cells and stem cells. An analysis of The Cancer Genome Atlas data revealed a correlation between high miR-10b levels and poor prognosis in glioblastoma patients. We measured the levels of miR-10b and found that it is upregulated in human glioblastoma tissues, glioblastoma cell and stem cell lines as compared to normal human tissues or astrocytes. Inhibition of miR-10b with a specific antagomir inhibited the proliferation of glioblastoma established and stem cell lines. Inhibition of miR-10b strongly reduced cell invasion and migration in glioblastoma cell and stem cell lines while overexpression of miR-10b induced cell migration and invasion. We also investigated several predicted targets of miR-10b but could not verify any of them experimentally. Additionally, miR-10b inhibition significantly decreased the in vivo growth of stem cell-derived orthotopic GBM xenografts. Altogether, our findings confirm the oncogenic effects of miR-10b in GBM cells and show for the first time a role of this microRNA in GBM stem cells. Targeting miR-10b might therefore inhibit glioblastoma stem cells, which are thought to be at the origin of glioblastoma and to contribute its recurrence and resistance to therapy.

Collaboration


Dive into the Benjamin Purow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Zhang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakub Godlewski

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge