Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiago C. Luis is active.

Publication


Featured researches published by Tiago C. Luis.


Nature | 2013

Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy

Alejandra Sanjuan-Pla; Iain C. Macaulay; Christina T. Jensen; Petter S. Woll; Tiago C. Luis; Adam Mead; Susan Hardman Moore; C Carella; S Matsuoka; T Bouriez Jones; Onima Chowdhury; L Stenson; Michael Lutteropp; Green Jca.; R Facchini; Hanane Boukarabila; Amit Grover; Adriana Gambardella; Supat Thongjuea; Joana Carrelha; P Tarrant; Debbie Atkinson; Clark S-A.; Claus Nerlov; Jacobsen Sew.

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding—a common and life-threatening side effect of many cancer therapies—and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.


Cell Stem Cell | 2013

Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells.

Charlotta Böiers; Joana Carrelha; Michael Lutteropp; Sidinh Luc; Joanna C.A. Green; Emanuele Azzoni; Petter S. Woll; Adam Mead; Anne Hultquist; Gemma Swiers; Elisa Gomez Perdiguero; Iain C Macaulay; Luca Melchiori; Tiago C. Luis; Shabnam Kharazi; Tiphaine Bouriez-Jones; Qiaolin Deng; Annica Pontén; Deborah Atkinson; Christina T. Jensen; Ewa Sitnicka; Frederic Geissmann; Isabelle Godin; Rickard Sandberg; Marella de Bruijn; Sten Eirik W. Jacobsen

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.


Nature Immunology | 2012

The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

Sidinh Luc; Tiago C. Luis; Hanane Boukarabila; Iain C Macaulay; Natalija Buza-Vidas; Tiphaine Bouriez-Jones; Michael Lutteropp; Petter S. Woll; Stephen Loughran; Adam Mead; Anne Hultquist; John Brown; Takuo Mizukami; S Matsuoka; Helen Ferry; Kristina Anderson; Deborah Atkinson; Shamit Soneji; Aniela Domanski; Alison Farley; Alejandra Sanjuan-Pla; Cintia Carella; Roger Patient; Marella de Bruijn; Tariq Enver; Claus Nerlov; C. Clare Blackburn; Isabelle Godin; Sten Eirik W. Jacobsen

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte–restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage–commitment process transits from the bone marrow to the remote thymus.


Nature Communications | 2016

Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells

Amit Grover; Alejandra Sanjuan-Pla; Supat Thongjuea; Joana Carrelha; Alice Giustacchini; Adriana Gambardella; Iain C. Macaulay; Elena Mancini; Tiago C. Luis; Adam Mead; Sten Eirik W. Jacobsen; Claus Nerlov

Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis.


Nature | 2018

Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells.

Joana Carrelha; Y Meng; L M Kettyle; Tiago C. Luis; R Norfo; V Alcolea; Hanane Boukarabila; F Grasso; Adriana Gambardella; Amit Grover; K Högstrand; A M Lord; Alejandra Sanjuan-Pla; Petter S. Woll; Claus Nerlov; Jacobsen Sew.

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Nature Immunology | 2016

Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors

Tiago C. Luis; Sidinh Luc; Takuo Mizukami; Hanane Boukarabila; Supat Thongjuea; Petter S. Woll; Emanuele Azzoni; Alice Giustacchini; Michael Lutteropp; Tiphaine Bouriez-Jones; Harsh Vaidya; Adam Mead; Deborah Atkinson; Charlotta Böiers; Joana Carrelha; Iain C Macaulay; Roger Patient; Frederic Geissmann; Claus Nerlov; Rickard Sandberg; Marella de Bruijn; C. Clare Blackburn; Isabelle Godin; Sten Eirik W. Jacobsen

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell–restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Experimental Hematology | 2018

Perivascular Niche Cells Sense Thrombocytopenia and Activate Platelet-Biased Hscs in an IL-1 Dependent Manner

Tiago C. Luis; Nikolaos Barkas; Alice Giustacchini; Bishan Wu; Tiphaine Bouriez-Jones; Iain C Macaulay; Claus Nerlov; Sten Eirik W. Jacobsen

Hematopoietic stem cells (HSC) are responsible for the on demand production of blood cells both in homeostasis and in response to stress. HSCs reside in specialized niches bone marrow (BM) niches, which regulate their function. These niches are dynamic entities with the capacity to sense and respond to specific requirements in blood production, but the mechanisms underlying this dynamic regulation remain unclear. Accumulating evidence indicate that HSCs are highly heterogeneous, and different BM niches have been proposed, potentially supporting different HSC subsets. We recently identified a subset of HSCs, which is molecularly and functionally primed for platelet replenishment. However, the role of the niche in the regulation of platelet-biased HSC function is still unknown. This work aims at investigating the role of the BM niche in the response of platelet-biased HSCs to thrombocytopenia. In response to platelet depletion platelet-biased HSCs are rapidly and selectively recruited into cell cycle, through a feedback mechanism to replenish platelet numbers and homeostasis. Using RNA-sequencing to analyze different BM niche cell populations and HSC subsets we identified IL-1 as a cytokine released upon platelet depletion and specifically sensed by niche LepR+ perivascular cells. Abrogation of IL-1 signaling specifically in LepR+ niche cells but not in hematopoietic cells impaired the platelet-biased HSC response to platelet depletion. This process was found to be dependent on platelet activation. This work uncovers a molecular mechanism involving the pro-inflammatory signal IL-1 and the niche perivascular cell compartment in the rapid activation of platelet biased HSCs to thrombocytopenia, highlighting a mechanism by which a distinct HSC subset senses and responds to the loss of the lineage it is intrinsically primed for.


Blood | 2018

Canonical Notch signaling is dispensable for adult steady-state and stress myelo-erythropoiesis.

Petter S. Woll; Natalija Buza-Vidas; Chin Dwl.; Hanane Boukarabila; Tiago C. Luis; L Stenson; Tiphaine Bouriez-Jones; Helen Ferry; Adam Mead; Deborah Atkinson; S Jin; Clark S-A.; B Wu; Emmanouela Repapi; Nicki Gray; Stephen Taylor; A P Mutvei; Y L Tsoi; Claus Nerlov; U Lendahl; Jacobsen Sew.

Although an essential role for canonical Notch signaling in generation of hematopoietic stem cells in the embryo and in thymic T-cell development is well established, its role in adult bone marrow (BM) myelopoiesis remains unclear. Some studies, analyzing myeloid progenitors in adult mice with inhibited Notch signaling, implicated distinct roles of canonical Notch signaling in regulation of progenitors for the megakaryocyte, erythroid, and granulocyte-macrophage cell lineages. However, these studies might also have targeted other pathways. Therefore, we specifically deleted, in adult BM, the transcription factor recombination signal-binding protein J κ (Rbpj), through which canonical signaling from all Notch receptors converges. Notably, detailed progenitor staging established that canonical Notch signaling is fully dispensable for all investigated stages of megakaryocyte, erythroid, and myeloid progenitors in steady state unperturbed hematopoiesis, after competitive BM transplantation, and in stress-induced erythropoiesis. Moreover, expression of key regulators of these hematopoietic lineages and Notch target genes were unaffected by Rbpj deficiency in BM progenitor cells.


Nature Cell Biology | 2016

A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors

Mario Buono; R Facchini; S Matsuoka; Supat Thongjuea; Dominique Waithe; Tiago C. Luis; Alice Giustacchini; Peter Besmer; Adam Mead; Sten Eirik W. Jacobsen; Claus Nerlov


Experimental Hematology | 2017

The evolving view of the hematopoietic stem cell niche

Isabel Beerman; Tiago C. Luis; Sofie Singbrant; Cristina Lo Celso; Simón Méndez-Ferrer

Collaboration


Dive into the Tiago C. Luis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sten Eirik W. Jacobsen

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge