Tian-Meng Sun
University of Science and Technology of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tian-Meng Sun.
ACS Nano | 2011
Feng Wang; Yu-Cai Wang; Shuang Dou; Meng-Hua Xiong; Tian-Meng Sun; Jun Wang
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. Through the development of a drug delivery system that tethers doxorubicin onto the surface of gold nanoparticles with a poly(ethylene glycol) spacer via an acid-labile linkage (DOX-Hyd@AuNPs), we have demonstrated that multidrug resistance in cancer cells can be significantly overcome by a combination of highly efficient cellular entry and a responsive intracellular release of doxorubicin from the gold nanoparticles in acidic organelles. DOX-Hyd@AuNPs achieved enhanced drug accumulation and retention in multidrug resistant MCF-7/ADR cancer cells when it was compared with free doxorubicin. It released doxorubicin in response to the pH of acidic organelles following endocytosis, opposite to the noneffective drug release from doxorubicin-tethered gold nanoparticles via the carbamate linkage (DOX-Cbm@AuNPs), which was shown by the recovered fluorescence of doxorubicin from quenching due to the nanosurface energy transfer between the doxorubicinyl groups and the gold nanoparticles. DOX-Hyd@AuNPs therefore significantly enhanced the cytotoxicity of doxorubicin and induced elevated apoptosis of MCF-7/ADR cancer cells. With a combined therapeutic potential and ability to probe drug release, DOX-Hyd@AuNPs represent a model with dual roles in overcoming MDR in cancer cells and probing the intracellular release of drug from its delivery system.
Small | 2010
Wen-Jing Song; Jin-Zhi Du; Tian-Meng Sun; Pei-Zhuo Zhang; Jun Wang
An efficient and safe delivery system for small interfering RNA (siRNA) is required for clinical application of RNA interfering therapeutics. Polyethyleneimine (PEI)-capped gold nanoparticles (AuNPs) are successfully manufactured using PEI as the reductant and stabilizer, which bind siRNA at an appropriate weight ratio by electrostatic interaction and result in well-dispersed nanoparticles with uniform structure and narrow size distribution. With siRNA binding, PEI-capped AuNPs induce more significant and enhanced reduction in targeted green fluorescent protein expression in MDA-MB-435s cells, though more internalized PEI/siRNA complexes in cells are evidenced by confocal laser scanning microscopy observation and fluorescence-activated cell sorting analyses. PEI-capped AuNPs/siRNA targeting endogenous cell-cycle kinase, an oncogene polo-like kinase 1 (PLK1), display significant gene expression knockdown and induce enhanced cell apoptosis, whereas it is not obvious when the cells are treated with PLK1 siRNA using PEI as the carrier. Without exhibiting cellular toxicity, PEI-capped AuNPs appear to be suitable as a potential carrier for intracellular siRNA delivery.
Bioconjugate Chemistry | 2011
Yu-Cai Wang; Feng Wang; Tian-Meng Sun; Jun Wang
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. The intracellular accumulation of drug and the intracellular release of drug molecules from the carrier could be the most important barriers for nanoscale carriers in overcoming MDR. We demonstrated that the redox-responsive micellar nanodrug carrier assembled from the single disulfide bond-bridged block polymer of poly(ε-caprolactone) and poly(ethyl ethylene phosphate) (PCL-SS-PEEP) achieved more drug accumulation and retention in MDR cancer cells. Such drug carrier rapidly released the incorporated doxorubicin (DOX) in response to the intracellular reductive environment. It therefore significantly enhanced the cytotoxicity of DOX to MDR cancer cells. It was demonstrated that nanoparticular drug carrier with either poly(ethylene glycol) or poly(ethyl ethylene phosphate) (PEEP) shell increased the influx but decreased the efflux of DOX by the multidrug resistant MCF-7/ADR breast cancer cells, in comparison with the direct incubation of MCF-7/ADR cells with DOX, which led to high cellular retention of DOX. Nevertheless, nanoparticles bearing PEEP shell exhibited higher affinity to the cancer cells. The shell detachment of the PCL-SS-PEEP nanoparticles caused by the reduction of intracellular glutathione significantly accelerated the drug release in MCF-7/ADR cells, demonstrated by the flow cytometric analyses, which was beneficial to the entry of DOX into the nuclei of MCF-7/ADR cells. It therefore enhanced the efficiency in overcoming MDR of cancer cells, which renders the redox-responsive nanoparticles promising in cancer therapy.
Journal of Controlled Release | 2011
Xian-Zhu Yang; Shuang Dou; Tian-Meng Sun; Cheng-Qiong Mao; Hong-Xia Wang; Jun Wang
Delivery of small interfering RNA (siRNA) has been one of the major hurdles for the application of RNA interference in therapeutics. Here, we describe a cationic lipid assisted polymeric nanoparticle system with stealthy property for efficient siRNA encapsulation and delivery, which was fabricated with poly(ethylene glycol)-b-poly(d,l-lactide), siRNA and a cationic lipid, using a double emulsion-solvent evaporation technique. By incorporation of the cationic lipid, the encapsulation efficiency of siRNA into the nanoparticles could be above 90% and the siRNA loading weight ratio was up to 4.47%, while the diameter of the nanoparticles was around 170 to 200nm. The siRNA retained its integrity within the nanoparticles, which were effectively internalized by cancer cells and escaped from the endosome, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in HepG2-luciferase cells which stably express luciferase, and suppression of polo-like kinase 1 (Plk1) expression in HepG2 cells, following delivery of specific siRNAs by the nanoparticles. Furthermore, the nanoparticles carrying siRNA targeting the Plk1 gene were found to induce remarkable apoptosis in both HepG2 and MDA-MB-435s cancer cells. Systemic delivery of specific siRNA by nanoparticles significantly inhibited luciferase expression in an orthotopic murine liver cancer model and suppressed tumor growth in a MDA-MB-435s murine xenograft model, suggesting its therapeutic promise in disease treatment.
Journal of Controlled Release | 2008
Yu-Cai Wang; Xi-Qiu Liu; Tian-Meng Sun; Meng-Hua Xiong; Jun Wang
Cellular specific micellar systems from functional amphiphilic block copolymers are attractive for targeted intracellular drug delivery. In this study, we developed reactive micelles based on diblock copolymer of poly(ethyl ethylene phosphate) and poly(epsilon-caprolactone). The micelles were further surface conjugated with galactosamine to target asialoglycoprotein receptor (ASGP-R) of HepG2 cells. The size of micellar nanoparticles was about 70nm in diameter, and nanoparticles were negatively charged in aqueous solution. Through recognition between galactose ligands with ASGP-R of HepG2 cells, cell surface binding and internalization of galactosamine-conjugated micelles were significantly promoted, which were demonstrated by flow cytometric analyses using rhodamine 123 fluorescent dye. Paclitaxel-loaded micelles with galactose ligands exhibited comparable activity to free paclitaxel in inhibiting HepG2 cell proliferation, in contrast to the poor inhibition activity of micelles without galactose ligands particularly at lower paclitaxel doses. In addition, population of HepG2 cells arrested in G2/M phase was in positive response to paclitaxel dose when cells were incubated with paclitaxel-loaded micelles with galactosamine conjugation, which was against the performance of micelles without galactose ligand, owing to the ligand-receptor interaction. The surface functionalized micellar system is promising for specific anticancer drug transportation and intracellular drug release.
Science Translational Medicine | 2012
Yandan Yao; Tian-Meng Sun; Songyin Huang; Shuang Dou; Ling Lin; Jianing Chen; Jian-bin Ruan; Cheng-Qiong Mao; Fengyan Yu; Musheng Zeng; Jian-ye Zang; Qiang Liu; Fengxi Su; Peter Zhang; Judy Lieberman; Jun Wang; Erwei Song
Antibody-mediated delivery of anticancer siRNAs suppresses Her2+ breast cancer growth and metastasis. A Bull’s-Eye for Breast Cancer The goal in archery is to hit the center of the target. Although this could be accomplished by randomly shooting a barrage of arrows, it would be more efficient—and less likely to provoke emergency room visits—to aim straight at the bull’s-eye. Cancer therapies work on a similar principle. Broad therapies may treat the cancer but have many unwanted effects on healthy tissue. Yao et al. now target cancer drugs directly to the tumor using single-chain fragmented antibodies (ScFvs). About 60% of metastatic breast cancers that express human epidermal growth factor receptor 2 (Her2) do not respond to the anti-Her2 therapeutic antibody trastuzumab. The authors hypothesized that ScFvs specific to Her2 could deliver small interfering RNA (siRNA) to Her2+ breast cancer cells. They complexed siRNA for Polo-like kinase 1 (PLK1), which promotes cell division, with a Her2-ScFv-protamine peptide fusion protein (F5-P). This complex suppressed Her2+ breast cancer cell lines and primary human cancers in orthotopic breast cancer models. The siRNA complexes slowed tumor cell growth, reduced metastasis, and prolonged survival with no observed toxicity. The antitumor effects were even greater when a mix of siRNAs was delivered. These results suggest that as a new platform to deliver siRNAs to specifically treat Her2+ breast cancers, F5-P may be on target. A major obstacle to developing small interfering RNAs (siRNAs) as cancer drugs is their intracellular delivery to disseminated cancer cells. Fusion proteins of single-chain fragmented antibodies (ScFvs) and positively charged peptides deliver siRNAs into specific target cells. However, the therapeutic potential of ScFv-mediated siRNA delivery has not been evaluated in cancer. Here, we tested whether Polo-like kinase 1 (PLK1) siRNAs complexed with a Her2-ScFv-protamine peptide fusion protein (F5-P) could suppress Her2+ breast cancer cell lines and primary human cancers in orthotopic breast cancer models. PLK1-siRNAs transferred by F5-P inhibited target gene expression, reduced proliferation, and induced apoptosis of Her2+ breast cancer cell lines and primary human cancer cells in vitro without triggering an interferon response. Intravenously injected F5-P/PLK1-siRNA complexes concentrated in orthotopic Her2+ breast cancer xenografts and persisted for at least 72 hours, leading to suppressed PLK1 gene expression and tumor cell apoptosis. The intravenously injected siRNA complexes retarded Her2+ breast tumor growth, reduced metastasis, and prolonged survival without evident toxicity. F5-P–mediated delivery of a cocktail of PLK1, CCND1, and AKT siRNAs was more effective than an equivalent dose of PLK1-siRNAs alone. These data suggest that F5-P could be used to deliver siRNAs to treat Her2+ breast cancer.
Macromolecular Rapid Communications | 2010
Yu-Cai Wang; Yang Li; Tian-Meng Sun; Meng-Hua Xiong; Juan Wu; Yi-Yan Yang; Jun Wang
Reversibly cross-linked core-shell-corona micelles based on a triblock copolymer composed of poly(aliphatic ester), polyphosphoester, and poly(ethylene glycol) are reported. The triblock copolymer is synthesized through consecutive ring-opening polymerization of ε-caprolactone and 2,4-dinitrophenylthioethyl ethylene phosphate, followed by conjugation of poly(ethylene glycol). After deprotection under mild conditions, the amphiphilic polymer forms core-shell-corona micelles with free thiols in the shell. Cross-linking of the micelles within the shell reduces their critical micellization concentration and enhances their stability against severe conditions. The redox-sensitive cross-linkage allows the facilitated release of entrapped anticancer drugs in the cytoplasm in response to the intracellular reductive environment. With enhanced stability during circulation after administration, and accelerated intracellular drug release at the target site, the biocompatible and biodegradable shell-cross-linked polymeric micelle is promising as a drug vehicle for cancer chemotherapy.
Biomaterials | 2011
Cheng-Qiong Mao; Jin-Zhi Du; Tian-Meng Sun; Yandan Yao; Pei-Zhuo Zhang; Erwei Song; Jun Wang
One of the key challenges in the development of RNA interference-based cancer therapy is the lack of an efficient delivery system for synthetic small interfering RNAs (siRNAs) that would enable efficient uptake by tumor cells and allow for significant knockdown of a target transcript in vivo. Here, we describe a micelleplex system based on an amphiphilic and cationic triblock copolymer, which can systemically deliver siRNA targeting the acid ceramidase (AC) gene for cancer therapy. This triblock copolymer, consisting of monomethoxy poly(ethylene glycol), poly(ε-caprolactone) and poly(2-aminoethyl ethylene phosphate), self-assembles into micellar nanoparticles (MNPs) in aqueous solution with an average diameter of 60 nm and a zeta potential of approximately 48 mV. The resulting micelleplex, formed by the interaction of MNPs and siRNA, was effectively internalized by BT474 breast cancer cells and siRNA was subsequently released, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in BT474-luciferase cells which stably express luciferase, and suppression of AC expression in BT474 cells at both the transcriptional and protein level, following delivery of specific siRNAs by the micelleplex. Furthermore, a micelleplex carrying siRNA targeting the AC (micelleplex(siAC)) gene was found to induce remarkable apoptosis and reduce the proliferation of cancer cells. Systemic delivery of micelleplex(siAC) significantly inhibited tumor growth in a BT474 xenograft murine model, with depressed expression of AC and no positive activation of the innate immune response, suggesting therapeutic promise for micelleplex siRNA delivery in cancer therapy.
Biomaterials | 2014
Tian-Meng Sun; Yu-Cai Wang; Feng Wang; Jin-Zhi Du; Cheng-Qiong Mao; Chun-Yang Sun; Rui-Zhi Tang; Yang Liu; Jing Zhu; Yan-Hua Zhu; Xian-Zhu Yang; Jun Wang
Nanoparticle-mediated delivery of chemotherapies has demonstrated enhanced anti-cancer efficacy, mainly through the mechanisms of both passive and active targeting. Herein, we report other than these well-elucidated mechanisms, rationally designed nanoparticles can efficiently deliver drugs to cancer stem cells (CSCs), which in turn contributes significantly to the improved anti-cancer efficacy. We demonstrate that doxorubicin-tethered gold nanoparticles via a poly(ethylene glycol) spacer and an acid-labile hydrazone bond mediate potent doxorubicin delivery to breast CSCs, which reduces their mammosphere formation capacity and their cancer initiation activity, eliciting marked enhancement in tumor growth inhibition in murine models. The drug delivery mediated by the nanoparticles also markedly attenuates tumor growth during off-therapy stage by reducing breast CSCs in tumors, while the therapy with doxorubicin alone conversely evokes an enrichment of breast CSCs. Our findings suggest that with well-designed drug delivery system, the conventional chemotherapeutic agents are promising for cancer stem cell therapy.
Molecular Pharmaceutics | 2011
Xi-Qiu Liu; Wen-Jing Song; Tian-Meng Sun; Pei-Zhuo Zhang; Jun Wang
MiRNAs are viable therapeutic targets for cancer therapy, but the targeted delivery of miRNA or its anti-miRNA antisense oligonucleotides (AMOs) remains a challenge. We report here a PEGylated LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with cyclic RGD peptide (cRGD) for specific and efficient delivery of AMO into endothelial cells, targeting α(v)β₃ integrin present on the tumor neovasculature. The nanoparticles effectively delivered anti-miR-296 AMO to the cytoplasm and downregulated the target miRNA in human umbilical vein endothelial cells (HUVECs), which further efficiently suppressed blood tube formulation and endothelial cell migration, owing to significant upregulation of hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), whereas nanoparticles without cRGD modification showed only little AMO uptake and miRNA silencing activity. In vivo assessment of angiogenesis using Matrigel plug assay also demonstrated that cRGD modified LPH nanoparticles have potential for antiangiogenesis in miRNA therapeutics. With the delivery of anti-miR-296 AMO by targeted nanoparticles, significant decrease in microvessel formulation within Matrigel was achieved through suppressing the invasion of CD31-positive cells into Matrigel and prompting HGS expression in angiogenic endothelial cells.