Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tian Qiu is active.

Publication


Featured researches published by Tian Qiu.


Annals of Oncology | 2013

Diagnostic value of a novel fully automated immunochemistry assay for detection of ALK rearrangement in primary lung adenocarcinoma

Jianming Ying; Lei Guo; Tian Qiu; Ling Shan; Yun Ling; Xinmin Liu; Ning Lu

BACKGROUND To evaluate the diagnostic value of a novel fully automated immunohistochemistry (IHC) assay for detection of anaplastic lymphoma kinase (ALK) fusion in a large number of ALK-positive lung adenocarcinoma (ADC) patients. PATIENTS AND METHODS We tested 196 lung ADCs for ALK rearrangement by two IHC assays (Ventana pre-diluted ALK D5F3 antibody with the Optiview DAB IHC detection kit and Optiview Amplification kit, D5F3 by Cell Signaling Technology (CST) with Ultraview DAB detection kit by Ventana), fluorescence in situ hybridization (FISH) and real-time reverse transcription-PCR (RT-PCR). CST ALK IHC was scored using the scoring scheme of 0, no staining; 1+, faint; 2+, moderate; and 3+, strong cytoplasmic reactivity in ≥ 10% of tumor cells. As for Ventana IHC, a binary scoring system (positive or negative for ALK status) was adopted for evaluating the staining results. RESULTS Among 196 cases tested, 63 (32%), 65 (33%), 70 (36%), and 69 (35%) cases were ALK positive by FISH, Ventana IHC, CST IHC, and RT-PCR, respectively. The sensitivity and specificity of Ventana IHC were 100% and 98%, respectively. Two Ventana IHC-positive cases, which were also CST IHC score of 3+, showed FISH negative, but their ALK rearrangement was confirmed by RT-PCR and direct sequencing. The sensitivity and specificity of CST IHC with staining intensity score of 1+ or more were 100% and 95%, respectively. Five (25%, of 20) patients with CST IHC score of 1+ were both FISH and RT-PCR negative. The sensitivity and specificity of RT-PCR for detection of ALK fusion were 98% and 95%, respectively. The total accordance rate between ALK RT-PCR and Ventana IHC was 97%. CONCLUSIONS The novel fully automated IHC assay is a reliable screening tool in routine pathologic laboratories for identification of patients with ALK rearrangement for targeted therapy in lung ADC.


PLOS ONE | 2015

Detection of ROS1 gene rearrangement in lung adenocarcinoma: comparison of IHC, FISH and real-time RT-PCR.

Ling Shan; Fang Lian; Lei Guo; Tian Qiu; Yun Ling; Jianming Ying; Dongmei Lin

Aims To compare fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and quantitative real-time reverse transcription-PCR (qRT-PCR) assays for detection of ROS1 fusion in a large number of ROS1-positive lung adenocatcinoma (ADC) patients. Methods Using IHC analysis, sixty lung ADCs including 16 cases with ROS1 protein expression and 44 cases without ROS1 expression were selected for this study. The ROS1 fusion status was examined by FISH and qRT-PCR assay. Results Among 60 cases, 16 (26.7%), 13 (21.7%) and 20 (33.3%) cases were ROS1 positive revealed by IHC, FISH and qRT-PCR, respectively. Using FISH as a standard method for ROS1 fusion detection, the sensitivity and specificity of IHC were 100% and 93.6%, respectively. Three IHC-positive cases, which showed FISH negative, were demonstrated with ROS1 fusion by qRT-PCR analysis. The sensitivity and specificity of qRT-PCR for detection for ROS1 fusion were 100% and 85.1%, respectively. The total concordance rate between IHC and qRT-PCR were 93.3%. Conclusion IHC is a reliable and rapid screening tool in routine pathologic laboratories for the identification of suitable candidates for ROS1-targeted therapy. Some ROS1 IHC-positive but FISH-negative cases did harbor the translocation events and may benefit from crizotinib.


BMC Cancer | 2015

Colorectal carcinomas with KRAS

Wenbin Li; Tian Qiu; Wenxue Zhi; Susheng Shi; Shuangmei Zou; Yun Ling; Ling Shan; Jianming Ying; Ning Lu

BackgroundKRAS mutation occurs in 35%-40% of colorectal cancer (CRC). The aim of our study was to evaluate the pathological and molecular features of specific KRAS mutated colorectal carcinomas. KRAS and BRAFV600E mutation tests were performed in 762 primary tumors from a consecutive cohort study of Chinese CRC patients.MethodsDNA mismatch repair (MMR) status was determined by immunohistochemistry (IHC) staining. Assessment of KRAS and BRAF V600E mutational status was performed using a multiplex allele-specific PCR-based assay.ResultsMutations of KRAS (34.8%) and BRAFV600E (3.1%) were nearly mutually exclusive. Both KRAS- and BRAF- mutated tumors were more likely to be located at proximal colon than wild-type (WT) carcinomas. KRAS-mutated carcinomas were more frequently observed in female patients (47.5% vs 37.1%, p = 0.005) and mucinous differentiation (34.7% vs 24.8%, p = 0.004), but have no difference between lymph node (LN) metastases and among pTNM stages. Whereas, BRAF-mutated carcinomas more frequently demonstrated histologic features such as proximal location (60.9% vs 20.9%, p = 0.001), low-grade histology (43.5% vs 18.0%, p = 0.005), mucinous differentiation (69.6% vs 25.9%, p = 0.001) and deficient MMR (dMMR) (21.7% vs 7.6%, p = 0.03). In particular, KRAS codon 12 mutated carcinomas had increased lymph node metastasis (odds ratio [OR] = 1.31; 95% confidence interval [CI] = 1.04 to 1.65; P = 0.02) and were more likely in higher disease stage (III-IV) than that of WT carcinomas (OR = 1.30; 95% CI = 1.03 to 1.64; P = 0.03). However, there were no significant differences in lymph node metastasis and disease stage between KRAS codon 13 mutated carcinoma and WT carcinoma patients.ConclusionsIn summary, KRAS codon 12 mutation, but not codon 13 mutation, is associated with lymph node metastasis and higher tumor stages.


PLOS ONE | 2012

Genome-Wide Screening for Genetic Alterations in Esophageal Cancer by aCGH Identifies 11q13 Amplification Oncogenes Associated with Nodal Metastasis

Jianming Ying; Ling Shan; Jisheng Li; Lan Zhong; Liyan Xue; Hong Zhao; Lili Li; Cordelia Langford; Lei Guo; Tian Qiu; Ning Lu; Qian Tao

Background Esophageal squamous cell carcinoma (ESCC) is highly prevalent in China and other Asian countries, as a major cause of cancer-related mortality. ESCC displays complex chromosomal abnormalities, including multiple structural and numerical aberrations. Chromosomal abnormalities, such as recurrent amplifications and homozygous deletions, directly contribute to tumorigenesis through altering the expression of key oncogenes and tumor suppressor genes. Methodology/Principle Findings To understand the role of genetic alterations in ESCC pathogenesis and identify critical amplification/deletion targets, we performed genome-wide 1-Mb array comparative genomic hybridization (aCGH) analysis for 10 commonly used ESCC cell lines. Recurrent chromosomal gains were frequently detected on 3q26-27, 5p15-14, 8p12, 8p22-24, 11q13, 13q21-31, 18p11 and 20q11-13, with frequent losses also found on 8p23-22, 11q22, 14q32 and 18q11-23. Gain of 11q13.3-13.4 was the most frequent alteration in ESCC. Within this region, CCND1 oncogene was identified with high level of amplification and overexpression in ESCC, while FGF19 and SHANK2 was also remarkably over-expressed. Moreover, a high concordance (91.5%) of gene amplification and protein overexpression of CCND1 was observed in primary ESCC tumors. CCND1 amplification/overexpression was also significantly correlated with the lymph node metastasis of ESCC. Conclusion These findings suggest that genomic gain of 11q13 is the major mechanism contributing to the amplification. Novel oncogenes identified within the 11q13 amplicon including FGF19 and SHANK2 may play important roles in ESCC tumorigenesis.


Lung Cancer | 2015

Concurrence of EGFR amplification and sensitizing mutations indicate a better survival benefit from EGFR-TKI therapy in lung adenocarcinoma patients

Ling Shan; Ziping Wang; Lei Guo; Hongyan Sun; Tian Qiu; Yun Ling; Wenbin Li; Lin Li; Xiuyun Liu; Bo Zheng; Ning Lu; Jianming Ying

OBJECTIVES Tumor heterogeneity, which causes different EGFR mutation abundance, is believed to be responsible for varied progression-free survival (PFS) in lung adenocarcinoma (ADC) patients receiving EGFR-TKI treatment. Frequent EGFR amplification and its common affection in EGFR mutant allele promote the hypothesis that EGFR mutant abundance might be determined by EGFR copy number variation and therefore examination of EGFR amplification status in EGFR mutant patients could predict the efficacy of EGFR-TKI treatment. MATERIALS AND METHODS In this study, 86 lung ADC patients, who harbored EGFR activating mutations and received EGFR-TKI treatment, were examined for EGFR amplification and expression by Dual-color Silver in situ Hybridization (DISH) and immunohistochemistry analysis, respectively. RESULTS AND CONCLUSION Forty-one of 86 (47.7%) samples with EGFR activating mutations were identified with EGFR amplification. Patients with EGFR gene amplification had a significantly longer PFS than those without (16.3 vs. 9.1 months, p=0.004). The EGFR expression was then examined by immunohistochemistry analysis. Thirty-nine of 86 (45%) tumors had EGFR overexpression, which was significantly correlated with EGFR amplification (p=0.000). However, patients with EGFR overexpression exhibited no difference in PFS (14.1 vs. 13.3 months, p=0.797). In conclusion, EGFR amplification occurs frequently in lung ADC patients harboring EGFR activating mutations, and could serve as an indicator for better response from EGFR-TKI treatment.


Scientific Reports | 2015

Detection of BRAF mutation in Chinese tumor patients using a highly sensitive antibody immunohistochemistry assay

Tian Qiu; Haizhen Lu; Lei Guo; Wenting Huang; Yun Ling; Ling Shan; Wenbin Li; Jianming Ying; Ning Lv

BRAF mutations can be found in various solid tumors. But accurate and reliable screening for BRAF mutation that is compatible for clinical application is not yet available. In this study, we used an automated immunohistochemistry (IHC) staining coupled with mouse monoclonal anti-BRAF V600E (VE1) primary antibody to screen the BRAF V600E mutation in 779 tumor cases, including 611 colorectal carcinomas (CRC), 127 papillary thyroid carcinomas (PTC) and 41 malignant melanomas. Among the 779 cases, 150 cases were positive for BRAF (V600E) staining, including 38 (of 611, 6%) CRCs, 102 (of 127, 80%) PTCs and 10 (of 41, 24%) malignant melanomas. Sanger sequencing and real-time PCR confirmed the sensitivity and specificity of IHC staining for the V600E mutation are 100% and 99%, respectively. Therefore, our study demonstrates that the fully automated IHC is a reliable tool to determine BRAF mutation status in CRC, PTC and melanoma and can be used for routine clinical screen.


BMC Cancer | 2015

Colorectal carcinomas with KRAS codon 12 mutation are associated with more advanced tumor stages

Wenbin Li; Tian Qiu; Wenxue Zhi; Susheng Shi; Shuangmei Zou; Yun Ling; Ling Shan; Jianming Ying; Ning Lu

BackgroundKRAS mutation occurs in 35%-40% of colorectal cancer (CRC). The aim of our study was to evaluate the pathological and molecular features of specific KRAS mutated colorectal carcinomas. KRAS and BRAFV600E mutation tests were performed in 762 primary tumors from a consecutive cohort study of Chinese CRC patients.MethodsDNA mismatch repair (MMR) status was determined by immunohistochemistry (IHC) staining. Assessment of KRAS and BRAF V600E mutational status was performed using a multiplex allele-specific PCR-based assay.ResultsMutations of KRAS (34.8%) and BRAFV600E (3.1%) were nearly mutually exclusive. Both KRAS- and BRAF- mutated tumors were more likely to be located at proximal colon than wild-type (WT) carcinomas. KRAS-mutated carcinomas were more frequently observed in female patients (47.5% vs 37.1%, p = 0.005) and mucinous differentiation (34.7% vs 24.8%, p = 0.004), but have no difference between lymph node (LN) metastases and among pTNM stages. Whereas, BRAF-mutated carcinomas more frequently demonstrated histologic features such as proximal location (60.9% vs 20.9%, p = 0.001), low-grade histology (43.5% vs 18.0%, p = 0.005), mucinous differentiation (69.6% vs 25.9%, p = 0.001) and deficient MMR (dMMR) (21.7% vs 7.6%, p = 0.03). In particular, KRAS codon 12 mutated carcinomas had increased lymph node metastasis (odds ratio [OR] = 1.31; 95% confidence interval [CI] = 1.04 to 1.65; P = 0.02) and were more likely in higher disease stage (III-IV) than that of WT carcinomas (OR = 1.30; 95% CI = 1.03 to 1.64; P = 0.03). However, there were no significant differences in lymph node metastasis and disease stage between KRAS codon 13 mutated carcinoma and WT carcinoma patients.ConclusionsIn summary, KRAS codon 12 mutation, but not codon 13 mutation, is associated with lymph node metastasis and higher tumor stages.


PLOS ONE | 2015

Prevalence and Clinicopathological Characteristics of HER2 and BRAF Mutation in Chinese Patients with Lung Adenocarcinoma

Ling Shan; Tian Qiu; Yun Ling; Lei Guo; Bo Zheng; Bingning Wang; Wenbin Li; Lin Li; Jianming Ying

Aims To determine the prevalence and clinicopathological characteristics of BRAF V600E mutation and HER2 exon 20 insertions in Chinese lung adenocarcinoma (ADC) patients. Methods Given the fact that the driver mutations are mutually exclusive in lung ADCs, 204 EGFR/KRAS wild-type cases were enrolled in this study. Direct Sanger sequencing was performed to examine BRAF V600E and HER2 exon 20 mutations. The association of BRAF and HER2 mutations with clinicopathological characteristics was statistically analyzed. Results Among the 204 lung ADCs tested, 11 cases (5.4%) carried HER2 exon 20 insertions and 4 cases (2.0%) had BRAF V600E mutation. HER2 mutation status was identified to be associated with a non-smoking history (p<0.05). HER2 mutation occurs in 9.4% of never smokers (10/106), 8.7% of female (8/92) and 2.7% of male (3/112) in this selected cohort. All four BRAF mutated patients were women and three of them were never-smokers. No HER2 mutant patients harbor BRAF mutation. Conclusions HER2 and BRAF mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer and the availability of targeted therapy, Chinese lung ADC patients without EGFR and KRAS mutations are recommended for HER2 and BRAF mutations detection, especially for those never smokers.


Oncotarget | 2016

Assessment of cytology based molecular analysis to guide targeted therapy in advanced non-small-cell lung cancer

Wenbin Li; Zhihui Zhang; Lei Guo; Tian Qiu; Yun Ling; Jian Cao; Huiqin Guo; Huan Zhao; Lin Li; Jianming Ying

To investigate the use of molecular testing on cytological specimens in selecting advanced non-small cell lung cancer (NSCLC) patients who are adequate for targeted treatment, a total of 137 NSCLC cases were analyzed by fluorescence in situ hybridization (FISH) for anaplastic lymphoma kinase (ALK) rearrangements, and Epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were evaluated by quantitative real-time PCR (qRT-PCR) platform combining amplification refractory mutation system (ARMS) primers and TaqMan probes. Cytological specimens included 91 fine-needle aspirates, 5 fibreoptic bronchoscopic derived samples and 41 pleural effusions. Among 137 NSCLCs analyzed for ALK FISH, 16 (11.7%, of 137) were detected to harbor ALK rearrangement. FISH positive cases were all defined as adenocarcinoma (ADC) histologic subtype and the FNA samples showed the highest ALK positive rate (13.2%, 12/91). Of the 9 ALK FISH positive patients who received crizotinib treatment, 8 (88.9%) patients exhibited tumor regression. In addition, 60 (44.8%, of 134) cases were found to harbor EGFR mutations and 22 patients with EGFR sensitive mutations who received gefitinib or erlotinib treatment showed a median PFS of 16.0 months. Mutations of KRAS occurred in 8 (6.0%, of 134) cases and this was mutually exclusive from EGFR mutation. Our results demonstrated that ALK FISH and EGFR, KRAS mutational analysis on cytological specimens are sensitive methods for screening advanced stage NSCLC patients who are adequate for targeted treatment.


Oncotarget | 2016

High frequency of clonal IG and T-cell receptor gene rearrangements in histiocytic and dendritic cell neoplasms

Wenting Huang; Tian Qiu; Linshu Zeng; Bo Zheng; Jianming Ying; Xiaoli Feng

The 2008 World Health Organization (WHO) diagnostic criteria of histiocytic and dendritic cell neoplasms from hematopoietic and lymphoid tissues no longer required the absence of clonal B-cell/T-cell receptor gene rearrangements. It is true that the clonal B-cell/T-cell receptor gene rearrangements have been identified in rare cases of histiocytic and dendritic cell neoplasms, such as those with or following lymphoma/leukemia or in some sporadic histiocytic/dendritic cell sarcomas, but the clonal features of such group of tumor are still not clear. Here we investigated the clonal status of 33 samples including Langerhans cell histiocytosis (LCH), Langerhans cell sarcoma (LCS), follicular dendritic cell sarcoma (FDCS), interdigitating dendritic cell sarcoma (IDCS) and histiocytic sarcoma (HS). Among them, twenty-eight cases were sporadic without current or past lymphoma/leukemia. Three cases were found with a past history of T-cell lymphoma, one case was followed by extraosseous plasmacytoma, and one case was found with diffuse large B-cell lymphoma (DLBCL). Our results showed that there was a high frequency of clonal IG and T-cell receptor gene rearrangements in these cases. Notably, 4 cases of LCH and 2 cases of FDCS showed both B and T cell receptor gene rearrangements concurrently. One case of FDCS synchronous with DLBCL showed identical clonal IGH in both tumor populations and clonal TCRβ in FDCS alone. No matter if the presence of clonal receptor gene rearrangements was associated with the tumor origin or tumorigenesis, it might serve as a novel tumor marker for developing target therapy.

Collaboration


Dive into the Tian Qiu's collaboration.

Top Co-Authors

Avatar

Jianming Ying

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Lei Guo

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yun Ling

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ling Shan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Wenbin Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ning Lu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Weihua Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Shuangmei Zou

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Bo Zheng

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Dongmei Lin

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge