Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tian Wei Goh is active.

Publication


Featured researches published by Tian Wei Goh.


Journal of Physical Chemistry Letters | 2016

DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal–Organic Frameworks

Takeshi Kobayashi; Frédéric A. Perras; Tian Wei Goh; Tanner L. Metz; Wenyu Huang; Marek Pruski

Ultrawideline dynamic nuclear polarization (DNP)-enhanced (195)Pt solid-state NMR (SSNMR) spectroscopy and theoretical calculations are used to determine the coordination of atomic Pt species supported within the pores of metal-organic frameworks (MOFs). The (195)Pt SSNMR spectra, with breadths reaching 10 000 ppm, were obtained by combining DNP with broadbanded cross-polarization and CPMG acquisition. Although the DNP enhancements in static samples are lower than those typically observed under magic-angle spinning conditions, the presented measurements would be very challenging using the conventional SSNMR methods. The DNP-enhanced ultrawideline NMR spectra served to separate signals from cis- and trans-coordinated atomic Pt(2+) species supported on the UiO-66-NH2 MOF. Additionally, the data revealed a dominance of kinetic effects in the formation of Pt(2+) complexes and the thermodynamic effects in their reduction to nanoparticles. A single cis-coordinated Pt(2+) complex was confirmed in MOF-253.


Chemsuschem | 2013

High‐Temperature‐Stable and Regenerable Catalysts: Platinum Nanoparticles in Aligned Mesoporous Silica Wells

Chaoxian Xiao; Raghu V. Maligal-Ganesh; Tao Li; Zhiyuan Qi; Zhiyong Guo; Kyle Brashler; Shannon Goes; Xinle Li; Tian Wei Goh; Randall E. Winans; Wenyu Huang

We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures.


Chemistry: A European Journal | 2017

Metal–Organic‐Framework‐Derived Carbons: Applications as Solid‐Base Catalyst and Support for Pd Nanoparticles in Tandem Catalysis

Xinle Li; Biying Zhang; Yuhui Fang; Weijun Sun; Zhiyuan Qi; Yuchen Pei; Shuyan Qi; Pengyu Yuan; Xuechen Luan; Tian Wei Goh; Wenyu Huang

The facile pyrolysis of a bipyridyl metal-organic framework, MOF-253, produces N-doped porous carbons (Cz-MOF-253), which exhibit excellent catalytic activity in the Knoevenagel condensation reaction and outperform other nitrogen-containing MOF-derived carbons. More importantly, by virtue of their high Lewis basicity and porous nature, Cz-MOF-253-supported Pd nanoparticles (Pd/Cz-MOF-253-800) show excellent performance in a one-pot sequential Knoevenagel condensation-hydrogenation reaction.


Chemistry: A European Journal | 2014

Selective Host–Guest Interaction between Metal Ions and Metal–Organic Frameworks Using Dynamic Nuclear Polarization Enhanced Solid‐State NMR Spectroscopy

Zhiyong Guo; Takeshi Kobayashi; Lin-Lin Wang; Tian Wei Goh; Chaoxian Xiao; Marc A. Caporini; Melanie Rosay; Duane D. Johnson; Marek Pruski; Wenyu Huang

The host-guest interaction between metal ions (Pt(2+) and Cu(2+) ) and a zirconium metal-organic framework (UiO-66-NH2 ) was explored using dynamic nuclear polarization-enhanced (15) N{(1) H} CPMAS NMR spectroscopy supported by X-ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt(2+) coordinates with two NH2 groups from the MOF and two Cl(-) from the metal precursor, whereas Cu(2+) do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt(2+) prefers a square-planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.


Journal of Materials Chemistry | 2017

Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

Yuchen Pei; Zhiyuan Qi; Xinle Li; Raghu V. Maligal-Ganesh; Tian Wei Goh; Chaoxian Xiao; Tianyu Wang; Wenyu Huang

Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO2, CdS, and Ni3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon source and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties (E1/2 = 0.850 V) in comparison with those of HCPs. We highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.


Journal of Physical Chemistry B | 2014

In situ X-ray absorption spectroscopy studies of kinetic interaction between platinum(II) ions and UiO-66 series metal-organic frameworks.

Chaoxian Xiao; Tian Wei Goh; Kyle Brashler; Yuchen Pei; Zhiyong Guo; Wenyu Huang

The interaction of guest Pt(II) ions with UiO-66-X (X = NH2, H, NO2, OMe, F) series metal-organic frameworks (MOFs) in aqueous solution was investigated using in situ X-ray absorption spectroscopy. All of these MOFs were found to be able to coordinate with Pt(II) ions. The Pt(II) ions in UiO-66-X MOFs generally coordinate with 1.6-2.4 Cl and 1.4-2.4 N or O atoms. We also studied the time evolution of the coordination structure and found that Pt(II) maintained a coordination number of 4 throughout the whole process. Furthermore, the kinetic parameters of the interaction of Pt(II) ions with UiO-66-X series MOFs (X = NH2, H, NO2, OMe, F) were determined by combinational linear fitting of extended X-ray absorption fine structure (EXAFS) spectra of the samples. The Pt(II) adsorption rate constants were found to be 0.063 h(-1) for UiO-66-NH2 and 0.011-0.017 h(-1) for other UiO-66-X (X = H, NO2, OMe, F) MOFs, which means that Pt(II) adsorption in UiO-66-NH2 is 4-6 times faster than that in other UiO-66 series MOFs. FTIR studies suggested that the carboxyl groups could be the major host ligands binding with Pt(II) ions in UiO-66 series MOFs, except for UiO-66-NH2, in which amino groups coordinate with Pt(II) ions.


Nature Catalysis | 2018

In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement

Bin Dong; Yuchen Pei; Fei Zhao; Tian Wei Goh; Zhiyuan Qi; Chaoxian Xiao; Kuangcai Chen; Wenyu Huang; Ning Fang

Understanding the fundamental catalytic principles when the catalytic centre is confined in nanoscale space that is dimensionally comparable to the reactant molecule is crucial for designing high-performance catalysts. Theoretical studies with simplified model systems and ensemble experimental measurements have shown that chemical reactions in nanoconfined environments are largely different from those in bulk solution. Here, we design a well-defined platform with catalytic centres confined in the end of nanopores with controlled lengths to study the in situ dynamic behaviour of catalytic processes under nanoconfinement at the single-molecule and single-particle level. Variable single molecular mass transport behaviour reveals the heterogeneity of the confined environment in the nanopores. With the capability of decoupling mass transport factors from reaction kinetics in the well-defined platform, we quantitatively uncovered a confinement-induced enhancement in the activity of platinum nanoparticles inside the nanopores. The combination of the unique model catalyst and the single-molecule super-localization imaging technique paves the way to understanding nanoconfinement effects in catalysis.Nanoconfinement effects are crucial in any process that involves porous materials. Here, the authors present a nanoporous catalyst platform that enables these effects to be studied in situ at the single-molecule and single-particle level with turnover resolution.


Topics in Catalysis | 2018

Enhanced Chemoselectivity in Pt–Fe@mSiO2 Bimetallic Nanoparticles in the Absence of Surface Modifying Ligands

Raghu V. Maligal-Ganesh; Kyle Brashler; Xuechen Luan; Tian Wei Goh; Jeffrey Gustafson; Jiashu Wu; Wenyu Huang

Noble metal-based bimetallic nanoparticles (NPs) synthesized using colloidal methods always contain organic capping agents. These NPs show high selectivities in many chemoselective hydrogenation reactions benefitting from both capping agents and secondary metals. However, it is challenging to separately identify the role of the secondary metal and the capping agents in the bimetallic NPs because the complete removal of the capping agents can often cause their aggregation or structural/compositional changes. Herein we report the synthesis of Pt5Fex (x = 1, 2 and 4) bimetallic NPs capped by an inorganic mesoporous silica (mSiO2) shell, which could prevent NP aggregation during high-temperature treatment to remove capping agents. Using these Pt5Fex@mSiO2 NPs with a clean surface, we could demonstrate the role played independently by the bimetallic composition in the selective hydrogenation of cinnamaldehyde and furfural. Understanding the functions of the secondary metal and the surface modifying ligands on the selectivity enhancement of bimetallic NPs is necessary for the design of high-performance chemoselective catalysts.


Nano Research | 2018

Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis

Zhiyuan Qi; Yuchen Pei; Tian Wei Goh; Zhaoyi Wang; Xinle Li; Mary Lowe; Raghu V. Maligal-Ganesh; Wenyu Huang

We report a facile strategy to synthesize intermetallic nanoparticle (iNP) electrocatalysts via one-pot pyrolysis of a zeolitic imidazolate framework, ZIF-8, encapsulating precious metal nanoparticles (NPs). ZIF-8 serves not only as precursor for N-doped carbon (NC), but also as Zn source for the formation of intermetallic or alloy NPs with the encapsulated metals. The resulting sub-4 nm PtZn iNPs embedded in NC exhibit high sintering resistance up to 1,000 °C. Importantly, the present methodology allows fine-tuning of both composition (e.g., PdZn and RhZn iNPs, as well as AuZn and RuZn alloy NPs) and size (2.4, 3.7, and 5.4 nm PtZn) of the as-formed bimetallic NPs. To the best of our knowledge, this is the first report of a metal-organic framework (MOF) with multiple functionalities, such as secondary metal source, carbon precursor, and size-regulating reagent, which promote the formation of iNPs. This work opens a new avenue for the synthesis of highly uniform and stable iNPs.


Catalysis Letters | 2018

Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks

Xinle Li; Biying Zhang; Ryan Van Zeeland; Linlin Tang; Yuchen Pei; Tian Wei Goh; Levi M. Stanley; Wenyu Huang

AbstractThe establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6′-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4′-Me2bpy-MOF-Pd. This study unambiguously demonstrates that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. This work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.Graphical AbstractWe encapsulate palladium nanoparticles in a series of isoreticular mixed-linker MOFs, and the obtained Pd-doped MOFs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki–Miyaura cross-coupling reactions. Impressively, m-6,6′-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4′-Me2bpy-MOF-Pd, thus implementing atomic-level controls of heterogeneous catalysis.

Collaboration


Dive into the Tian Wei Goh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinle Li

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Yuchen Pei

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiyuan Qi

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Guo

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge