Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. George Fantus is active.

Publication


Featured researches published by I. George Fantus.


Cancer Research | 2007

Metformin Inhibits Mammalian Target of Rapamycin–Dependent Translation Initiation in Breast Cancer Cells

Ryan J.O. Dowling; Mahvash Zakikhani; I. George Fantus; Michael Pollak; Nahum Sonenberg

Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth.


Cellular Signalling | 2008

Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of β-catenin

Tianru Jin; I. George Fantus; Jane Sun

The bipartite transcription factor beta-catenin/TCF (cat/TCF) has been recognized as the major effector of the Wnt signaling pathway for more than a decade, and its over-activation has been associated with malignancy such as colon and breast cancer. Extensive examination in different cell lineages has shown that the activity of cat/TCF can be stimulated by mechanisms other than via the Wnt glycoproteins, including the stimulation of beta-cat nuclear translocation and enhanced binding of cat/TCF to the Wnt target gene promoters by insulin and insulin-like growth factor-1 (IGF-1). In addition, the heterotrimeric G proteins of the G(12) subfamily can interact with the cytoplasmic domain of cadherins, resulting in the release of the transcriptional activator beta-cat. Furthermore, certain peptide hormones may stimulate cat/TCF-mediated gene transcription via activation of their corresponding G-protein coupled receptors. Recently, the serine/threonine kinase GSK-3 has been recognized to coordinate with AMP activated protein kinase (AMPK) in phosphorylation and activation of TSC2, the major component of the tumor suppressor complex TSC1/2. Thus, Wnt activation can stimulate protein translation via GSK-3 and TSC1/2 inactivation, followed by mTOR activation. Finally, beta-cat also functions as a pivotal molecule in defense against oxidative stress via serving as a partner of forkhead box O (FOXO) transcription factors. Thus, FOXO proteins, which mainly mediate aging and stress signaling, and TCF factors, which mainly mediate developmental and proliferation signaling, compete for a limited pool of free beta-cat. Insulin and growth factors, on the other hand, control the balance between TCF- and FOXO-mediated gene transcription via phosphorylation and nuclear exclusion of FOXO proteins. These observations provide new insight to understand how Wnt, insulin/growth factors, and FOXOs are involved in versatile physiological events and the development and progression of various human diseases.


Clinical Breast Cancer | 2008

Insulin-Lowering Effects of Metformin in Women with Early Breast Cancer

Pamela J. Goodwin; Kathleen I. Pritchard; Marguerite Ennis; Mark Clemons; Margaret Graham; I. George Fantus

BACKGROUND Obesity has been associated with poor breast cancer outcomes. Insulin may mediate this effect, interacting with insulin receptors on breast cancer cells. Metformin, a biguanide derivative used in the treatment of diabetes, reduces insulin levels in subjects with type 2 diabetes and other insulin-resistant states. If metformin lowers insulin levels in women with breast cancer, it may also improve breast cancer outcomes. PATIENTS AND METHODS We administered metformin (1500 mg per day) to 32 women with early breast cancer whose baseline insulin levels were at least 45 pmol/L to determine its effect on insulin levels. RESULTS Twenty-two (69%) women completed the 6-month intervention. Four women (12.5%) dropped out because of gastrointestinal side effects; the others withdrew for reasons not related to toxicity. Completers were similar to noncompleters for all baseline characteristics apart from global health, overall physical condition, overall quality of life, physical function, and social function (HRQOL), which was decreased in noncompleters. Metformin significantly lowered fasting insulin levels by 15.8 pmol/L (22.4%; P=.024) and improved insulin sensitivity by 25.6% (P=.018), total cholesterol by 5.3%, and low-density lipoprotein (LDL) cholesterol by 9.1%. Metformin reduced weight by 1.9 kg (2.5%; P=.01), and it had no significant effects on HRQOL or specific gastrointestinal symptoms (appetite, nausea/vomiting, diarrhea, constipation). CONCLUSION Metformin significantly lowers insulin levels, and it improves insulin resistance in nondiabetic women with breast cancer. A phase III randomized trial to evaluate its effects on breast cancer outcomes is recommended.


Journal of The American Society of Nephrology | 2010

Glomerular Structure and Function Require Paracrine, Not Autocrine, VEGF–VEGFR-2 Signaling

Karen Sison; Vera Eremina; Hans J. Baelde; Wang Min; Masanori Hirashima; I. George Fantus; Susan E. Quaggin

VEGF is a potent vascular growth factor produced by podocytes in the developing and mature glomerulus. Specific deletion of VEGF from podocytes causes glomerular abnormalities including profound endothelial cell injury, suggesting that paracrine signaling is critical for maintaining the glomerular filtration barrier (GFB). However, it is not clear whether normal GFB function also requires autocrine VEGF signaling in podocytes. In this study, we sought to determine whether an autocrine VEGF-VEGFR-2 loop in podocytes contributes to the maintenance of the GFB in vivo. We found that induced, whole-body deletion of VEGFR-2 caused marked abnormalities in the kidney and also other tissues, including the heart and liver. By contrast, podocyte-specific deletion of the VEGFR-2 receptor had no effect on glomerular development or function even up to 6 months old. Unlike cell culture models, enhanced expression of VEGF by podocytes in vivo caused foot process fusion and alterations in slit diaphragm-associated proteins; however, inhibition of VEGFR-2 could not rescue this defect. Although VEGFR-2 was dispensable in the podocyte, glomerular endothelial cells depended on VEGFR-2 expression: postnatal deletion of the receptor resulted in global defects in the glomerular microvasculature. Taken together, our results provide strong evidence for dominant actions of a paracrine VEGF-VEGFR-2 signaling loop both in the developing and in the filtering glomerulus. VEGF produced by the podocyte regulates the structure and function of the adjacent endothelial cell.


Diabetes | 2007

Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo.

Andrei I. Oprescu; George Bikopoulos; Anthony E. Naassan; Emma M. Allister; Christine Tang; Edward Park; Hiroshi Uchino; Gary F. Lewis; I. George Fantus; Maria Rozakis-Adcock; Michael B. Wheeler; Adria Giacca

OBJECTIVE—An important mechanism in the pathogenesis of type 2 diabetes in obese individuals is elevation of plasma free fatty acids (FFAs), which induce insulin resistance and chronically decrease β-cell function and mass. Our objective was to investigate the role of oxidative stress in FFA-induced decrease in β-cell function. RESEARCH DESIGN AND METHODS—We used an in vivo model of 48-h intravenous oleate infusion in Wistar rats followed by hyperglycemic clamps or islet secretion studies ex vivo and in vitro models of 48-h exposure to oleate in islets and MIN6 cells. RESULTS—Forty-eight–hour infusion of oleate decreased the insulin and C-peptide responses to a hyperglycemic clamp (P < 0.01), an effect prevented by coinfusion of the antioxidants N-acetylcysteine (NAC) and taurine. Similar to the findings in vivo, 48-h infusion of oleate decreased glucose-stimulated insulin secretion ex vivo (P < 0.01) and induced oxidative stress (P < 0.001) in isolated islets, effects prevented by coinfusion of the antioxidants NAC, taurine, or tempol (4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl). Forty-eight–hour infusion of olive oil induced oxidative stress (P < 0.001) and decreased the insulin response of isolated islets similar to oleate (P < 0.01). Islets exposed to oleate or palmitate and MIN6 cells exposed to oleate showed a decreased insulin response to high glucose and increased levels of oxidative stress (both P < 0.001), effects prevented by taurine. Real-time RT-PCR showed increased mRNA levels of antioxidant genes in MIN6 cells after oleate exposure, an effect partially prevented by taurine. CONCLUSIONS—Our data are the first demonstration that oxidative stress plays a role in the decrease in β-cell secretory function induced by prolonged exposure to FFAs in vitro and in vivo.


PLOS ONE | 2012

Curcumin Prevents High Fat Diet Induced Insulin Resistance and Obesity via Attenuating Lipogenesis in Liver and Inflammatory Pathway in Adipocytes

Weijuan Shao; Zhiwen Yu; Yuting P Chiang; Yi Yang; Tuanyao Chai; Warren D. Foltz; Huogen Lu; I. George Fantus; Tianru Jin

Background Mechanisms underlying the attenuation of body weight gain and insulin resistance in response to high fat diet (HFD) by the curry compound curcumin need to be further explored. Although the attenuation of the inflammatory pathway is an accepted mechanism, a recent study suggested that curcumin stimulates Wnt signaling pathway and hence suppresses adipogenic differentiation. This is in contrast with the known repressive effect of curcumin on Wnt signaling in other cell lineages. Methodology and Principal Findings We conducted the examination on low fat diet, or HFD fed C57BL/6J mice with or without curcumin intervention for 28 weeks. Curcumin significantly attenuated the effect of HFD on glucose disposal, body weight/fat gain, as well as the development of insulin resistance. No stimulatory effect on Wnt activation was observed in the mature fat tissue. In addition, curcumin did not stimulate Wnt signaling in vitro in primary rat adipocytes. Furthermore, curcumin inhibited lipogenic gene expression in the liver and blocked the effects of HFD on macrophage infiltration and the inflammatory pathway in the adipose tissue. Conclusions and Significance We conclude that the beneficial effect of curcumin during HFD consumption is mediated by attenuating lipogenic gene expression in the liver and the inflammatory response in the adipose tissue, in the absence of stimulation of Wnt signaling in mature adipocytes.


Endocrinology | 2008

Cross Talk between the Insulin and Wnt Signaling Pathways : Evidence from Intestinal Endocrine L Cells

Fenghua Yi; Jane Sun; Gareth E. Lim; I. George Fantus; Patricia L. Brubaker; Tianru Jin

The proglucagon gene (glu) encodes the incretin hormone glucagon-like peptide-1 (GLP-1), produced in the intestinal endocrine L cells. We found previously that the bipartite transcription factor beta-catenin/T cell factor (cat/TCF), the major effector of the canonical Wnt signaling pathway, activates intestinal glu expression and GLP-1 production. We show here that 100 nm insulin stimulated glu expression and enhanced GLP-1 content in the intestinal GLUTag L cell line as well as in primary fetal rat intestinal cell cultures. Increased intestinal glu mRNA expression and GLP-1 content were also observed in vivo in hyperinsulinemic MKR mice. In the GLUTag cells, insulin-induced activation of glu expression occurred through the same TCF site that mediates cat/TCF activation. Phosphatidylinositol 3-kinase inhibition, but not protein kinase B inhibition, attenuated the stimulation by insulin. Furthermore, nuclear beta-catenin content in the intestinal L cells was increased by insulin. Finally, insulin enhanced the binding of TCF-4 and beta-catenin to the TCF site in the glu promoter G2 enhancer element, as determined by quantitative chromatin immunoprecipitation assay. Collectively, these findings indicate that enhancement of beta-catenin nuclear translocation and cat/TCF binding are among the mechanisms underlying cross talk between the insulin and Wnt signaling pathways in intestinal endocrine L cells.


Molecular and Cellular Biochemistry | 1998

Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects

I. George Fantus; Evangelia Tsiani

The pathophysiologic importance of insulin resistance in diseases such as obesity and diabetes mellitus has led to great interest in defining the mechanism of insulin action as well as the means to overcome the biochemical defects responsible for the resistance. Vanadium compounds have been discovered to mimic many of the metabolic actions of insulin both in vitro and in vivo and improve glycemic control in human subjects with diabetes mellitus. Apart from its direct insulinmimetic actions, we found that vanadate modulates insulin metabolic effects by enhancing insulin sensitivity and prolonging insulin action. All of these actions appear to be related to protein tyrosine phosphatase (PTP) inhibition. However, in contrast to its stimulatory effects, vanadate inhibits basal and insulin-stimulated system A amino acid uptake and cell proliferation. The mechanism of these actions also appears to be related to PTP inhibition, consistent with the multiple roles of PTPs in regulating signal transduction. While the precise biochemical pathway of vanadate action is not yet known, it is clearly different from that of insulin in that the insulin receptor and phosphatidylinositol 3′-kinase do not seem to be essential for vanadate stimulation of glucose uptake and metabolism. The ability of vanadium compounds to ‘bypass’ defects in insulin action in diseases characterized by insulin resistance and their apparent preferential metabolic versus mitogenic signaling profile make them attractive as potential pharmacological agents.


Cell | 2012

Soluble FLT1 Binds Lipid Microdomains in Podocytes to Control Cell Morphology and Glomerular Barrier Function

Jing Jin; Karen Sison; Chengjin Li; Ruijun Tian; Monika Wnuk; Hoon-Ki Sung; Marie Jeansson; Cunjie Zhang; Monika Tucholska; Nina Jones; Dontscho Kerjaschki; Masabumi Shibuya; I. George Fantus; Andras Nagy; Hans Gerber; Napoleone Ferrara; Tony Pawson; Susan E. Quaggin

Vascular endothelial growth factor and its receptors, FLK1/KDR and FLT1, are key regulators of angiogenesis. Unlike FLK1/KDR, the role of FLT1 has remained elusive. FLT1 is produced as soluble (sFLT1) and full-length isoforms. Here, we show that pericytes from multiple tissues produce sFLT1. To define the biologic role of sFLT1, we chose the glomerular microvasculature as a model system. Deletion of Flt1 from specialized glomerular pericytes, known as podocytes, causes reorganization of their cytoskeleton with massive proteinuria and kidney failure, characteristic features of nephrotic syndrome in humans. The kinase-deficient allele of Flt1 rescues this phenotype, demonstrating dispensability of the full-length isoform. Using cell imaging, proteomics, and lipidomics, we show that sFLT1 binds to the glycosphingolipid GM3 in lipid rafts on the surface of podocytes, promoting adhesion and rapid actin reorganization. sFLT1 also regulates pericyte function in vessels outside of the kidney. Our findings demonstrate an autocrine function for sFLT1 to control pericyte behavior.


Journal of Biological Chemistry | 2001

Enhanced Sensitivity of Insulin-resistant Adipocytes to Vanadate Is Associated with Oxidative Stress and Decreased Reduction of Vanadate (+5) to Vanadyl (+4)

Bing Lu; David Ennis; Robert Lai; Elena Bogdanovic; Rinna Nikolov; Lisa Salamon; Claire Fantus; Hoang Le-Tien; I. George Fantus

Vanadate (sodium orthovanadate), an inhibitor of phosphotyrosine phosphatases (PTPs), mimics many of the metabolic actions of insulin in vitro and in vivo. The potential of vanadate to stimulate glucose transport independent of the early steps in insulin signaling prompted us to test its effectiveness in an in vitro model of insulin resistance. In primary rat adipocytes cultured for 18 h in the presence of high glucose (15 mm) and insulin (10−7 m), sensitivity to insulin-stimulated glucose transport was decreased. In contrast, there was a paradoxical enhanced sensitivity to vanadate of the insulin-resistant cells (EC50 for control, 325 ± 7.5 μm; EC50 for insulin-resistant, 171 ± 32 μm; p < 0.002). Enhanced sensitivity was also present for vanadate stimulation of insulin receptor kinase activity and autophosphorylation and Akt/protein kinase B Ser-473 phosphorylation consistent with more effective PTP inhibition in the resistant cells. Investigation of this phenomenon revealed that 1) depletion of GSH with buthionine sulfoximine reproduced the enhanced sensitivity to vanadate while preincubation of resistant cells withN-acetylcysteine (NAC) prevented it, 2) intracellular GSH was decreased in resistant cells and normalized by NAC, 3) exposure to high glucose and insulin induced an increase in reactive oxygen species, which was prevented by NAC, 4) EPR (electron paramagnetic resonance) spectroscopy showed a decreased amount of vanadyl (+4) in resistant and buthionine sulfoximine-treated cells, which correlated with decreased GSH and increased vanadate sensitivity, while total vanadium uptake was not altered, and 5) inhibition of recombinant PTP1Bin vitro was more sensitive to vanadate (+5) than vanadyl (+4). In conclusion, the parodoxical increased sensitivity to vanadate in hyperglycemia-induced insulin resistant adipocytes is due to oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). Thus, sensitivity of PTP inhibition and glucose transport to vanadate is regulated by cellular redox state.

Collaboration


Dive into the I. George Fantus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Xia

University of Toronto

View shared research outputs
Top Co-Authors

Avatar

Tianru Jin

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Huogen Lu

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiwen Yu

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Anu Shah

University of Toronto

View shared research outputs
Researchain Logo
Decentralizing Knowledge