Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tie-Shan Tang is active.

Publication


Featured researches published by Tie-Shan Tang.


Neuron | 2003

Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1.

Tie-Shan Tang; Huiping Tu; Edmond Chan; Anton Maximov; Zhengnan Wang; Cheryl L. Wellington; Michael R. Hayden; Ilya Bezprozvanny

Huntingtons disease (HD) is caused by polyglutamine expansion (exp) in huntingtin (Htt). The type 1 inositol (1,4,5)-triphosphate receptor (InsP3R1) is an intracellular calcium (Ca2+) release channel that plays an important role in neuronal function. In a yeast two-hybrid screen with the InsP3R1 carboxy terminus, we isolated Htt-associated protein-1A (HAP1A). We show that an InsP3R1-HAP1A-Htt ternary complex is formed in vitro and in vivo. In planar lipid bilayer reconstitution experiments, InsP3R1 activation by InsP3 is sensitized by Httexp, but not by normal Htt. Transfection of full-length Httexp or caspase-resistant Httexp, but not normal Htt, into medium spiny striatal neurons faciliates Ca2+ release in response to threshold concentrations of the selective mGluR1/5 agonist 3,5-DHPG. Our findings identify a novel molecular link between Htt and InsP3R1-mediated neuronal Ca2+ signaling and provide an explanation for the derangement of cytosolic Ca2+ signaling in HD patients and mouse models.


The Journal of Neuroscience | 2005

Reelin Modulates NMDA Receptor Activity in Cortical Neurons

Ying Chen; Uwe Beffert; Mert Ertunc; Tie-Shan Tang; Ege T. Kavalali; Ilya Bezprozvanny; Joachim Herz

Reelin, a large protein that regulates neuronal migration during embryonic development, activates a conserved signaling pathway that requires its receptors, very low-density lipoprotein receptor and apolipoprotein E receptor 2, the cytoplasmic adaptor protein Disabled-1 (Dab1), and Src family kinases (SFK). Reelin also markedly enhances long-term potentiation in the adult hippocampus, suggesting that this developmental signaling pathway can physiologically modulate learning and behavior. Here, we show that Reelin can regulate NMDA-type glutamate receptor activity through a mechanism that requires SFKs and Dab1. Reelin mediates tyrosine phosphorylation of and potentiates calcium influx through NMDA receptors in primary wild-type cortical neurons but not in Dab1 knock-out neurons or in cells in which Reelin binding to its receptors is blocked by a receptor antagonist. Inhibition of SFK abolishes Reelin-induced and glutamate-dependent enhancement of calcium influx. We also show that Reelin-induced augmentation of Ca2+ entry through NMDA receptors increases phosphorylation and nuclear translocation of the transcription factor cAMP-response element binding protein. Thus, Reelin may physiologically modulate learning and memory by modulating NMDA receptor functions.


The Journal of Neuroscience | 2008

Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 3

Xi Chen; Tie-Shan Tang; Huiping Tu; Omar Nelson; Mark A. Pook; Robert E. Hammer; Nobuyuki Nukina; Ilya Bezprozvanny

Spinocerebellar ataxia type 3 (SCA3), also known as Machado–Joseph disease (MJD), is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in ataxin-3 (ATX3; MJD1) protein. In biochemical experiments, we demonstrate that mutant ATX3exp specifically associated with the type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1), an intracellular calcium (Ca2+) release channel. In electrophysiological and Ca2+ imaging experiments, we show that InsP3R1 was sensitized to activation by InsP3 in the presence of mutant ATX3exp. We found that feeding SCA3-YAC-84Q transgenic mice with dantrolene, a clinically relevant stabilizer of intracellular Ca2+ signaling, improved their motor performance and prevented neuronal cell loss in pontine nuclei and substantia nigra regions. Our results indicate that deranged Ca2+ signaling may play an important role in SCA3 pathology and that Ca2+ signaling stabilizers such as dantrolene may be considered as potential therapeutic drugs for treatment of SCA3 patients.


The Journal of Neuroscience | 2007

Dopaminergic Signaling and Striatal Neurodegeneration in Huntington's Disease

Tie-Shan Tang; Xi Chen; Jing Liu; Ilya Bezprozvanny

Huntingtons disease (HD) is a neurodegenerative disorder caused by polyglutamine (polyQ) expansion in Huntingtin protein (Htt). PolyQ expansion in Httexp causes selective degeneration of striatal medium spiny neurons (MSNs) in HD patients. Striatal MSN neurons receive glutamatergic input from the cortex and dopaminergic input from the substantia nigra. In previous studies with the yeast artificial chromosome (YAC128) transgenic HD mouse model, we established a connection between glutamate receptor activation, disturbed calcium (Ca2+) signaling, and apoptosis of HD MSNs (Tang et al., 2005). Here, we used the same YAC128 mouse model to investigate the role of dopaminergic signaling in HD. We discovered that glutamate and dopamine signaling pathways act synergistically to induce elevated Ca2+ signals and to cause apoptosis of YAC128 MSNs in vitro. We demonstrated that potentiating effects of dopamine are mediated by D1-class dopamine receptors (DARs) and not by D2-class DARs. Consistent with in vitro findings, in whole-animal experiments we found that persistent elevation of striatal dopamine levels exacerbated the behavioral motor deficits and MSN neurodegeneration in YAC128 mice. We further discovered that the clinically relevant dopamine pathway inhibitor tetrabenazine alleviated the motor deficits and reduced striatal cell loss in YAC128 mice. Our results suggest that dopamine signaling pathway plays an important role in HD pathogenesis and that antagonists of dopamine pathway such as tetrabenazine or dopamine receptor blockers may have a therapeutic potential for treatment of HD beyond well established “symptomatic” benefit.


Molecular and Cellular Biology | 2006

Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage

Caixia Guo; Tie-Shan Tang; Marzena Bienko; Joanne L. Parker; Aleksandra B. Bielen; Eiichiro Sonoda; Shunichi Takeda; Helle D. Ulrich; Ivan Dikic; Errol C. Friedberg

ABSTRACT REV1 protein is a eukaryotic member of the Y family of DNA polymerases involved in the tolerance of DNA damage by replicative bypass. The precise role(s) of REV1 in this process is not known. Here we show, by using the yeast two-hybrid assay and the glutathione S-transferase pull-down assay, that mouse REV1 can physically interact with ubiquitin. The association of REV1 with ubiquitin requires the ubiquitin-binding motifs (UBMs) located at the C terminus of REV1. The UBMs also mediate the enhanced association between monoubiquitylated PCNA and REV1. In cells exposed to UV radiation, the association of REV1 with replication foci is dependent on functional UBMs. The UBMs of REV1 are shown to contribute to DNA damage tolerance and damage-induced mutagenesis in vivo.


Cellular and Molecular Life Sciences | 2009

Y-family DNA polymerases in mammalian cells

Caixia Guo; J. Nicole Kosarek-Stancel; Tie-Shan Tang; Errol C. Friedberg

Eukaryotic genomes are replicated with high fidelity to assure the faithful transmission of genetic information from one generation to the next. The accuracy of replication relies heavily on the ability of replicative DNA polymerases to efficiently select correct nucleotides for the polymerization reaction and, using their intrinsic exonuclease activities, to excise mistakenly incorporated nucleotides. Cells also possess a variety of specialized DNA polymerases that, by a process called translesion DNA synthesis (TLS), help overcome replication blocks when unrepaired DNA lesions stall the replication machinery. This review considers the properties of the Y-family (a subset of specialized DNA polymerases) and their roles in modulating spontaneous and genotoxic-induced mutations in mammals. We also review recent insights into the molecular mechanisms that regulate PCNA monoubiquitination and DNA polymerase switching during TLS and discuss the potential of using Y-family DNA polymerases as novel targets for cancer prevention and therapy.


The Journal of Neuroscience | 2005

Association of CaV1.3 L-Type Calcium Channels with Shank

Hua Zhang; Anton Maximov; Yu Fu; Fang Xu; Tie-Shan Tang; Tatiana Tkatch; D. James Surmeier; Ilya Bezprozvanny

Neurons express multiple types of voltage-gated calcium (Ca2+) channels. Two subtypes of neuronal L-type Ca2+ channels are encoded by CaV1.2 and CaV1.3 pore-forming subunits. Both CaV1.2 and CaV1.3 subunits contain class I PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain-binding consensus at their C termini. In yeast two-hybrid screen of rat brain cDNA library with the C-terminal bait of CaV1.3a (long C-terminal splice variant) L-type Ca2+ channel subunit, we isolated multiple clones of postsynaptic adaptor protein Shank. We demonstrated a specific association of CaV1.3a C termini, but not of CaV1.2 C termini, with Shank PDZ domain in vitro. We further demonstrated that the proline-rich region present in C termini of CaV1.3a subunit binds to Shank Src homology 3 domain. We established that CaV1.3a and Shank localized to postsynaptic locations in cultured rat hippocampal neurons. By expressing epitope-tagged recombinant CaV1.3 subunits in rat hippocampal neuronal cultures, we demonstrated that the presence of Shank-binding motifs in CaV1.3a sequence is both necessary and sufficient for synaptic clustering of CaV1.3 L-type Ca2+ channels. In experiments with dominant-negative peptides and dihydropyridine-resistant CaV1.3a mutants, we demonstrated an importance of Shank-binding motif in CaV1.3a sequence for phosphorylated cAMP response element-binding protein (pCREB) signaling in cultured hippocampal neurons. Our results directly link CaV1.3 neuronal L-type Ca2+ channels to macromolecular signaling complex formed by Shank and other modular adaptor proteins at postsynaptic density and provide novel information about the role played by CaV1.3 L-type Ca2+ channels in pCREB signaling.


Nature Chemical Biology | 2008

Small-molecule activation of neuronal cell fate

Jay W. Schneider; Zhengliang Gao; Shijie Li; Midhat S. Farooqi; Tie-Shan Tang; Ilya Bezprozvanny; Doug E. Frantz; Jenny Hsieh

We probed an epigenetic regulatory path from small molecule to neuronal gene activation. Isoxazole small molecules triggered robust neuronal differentiation in adult neural stem cells, rapidly signaling to the neuronal genome via Ca(2+) influx. Ca(2+)-activated CaMK phosphorylated and mediated nuclear export of the MEF2 regulator HDAC5, thereby de-repressing neuronal genes. These results provide new tools to explore the epigenetic signaling circuitry specifying neuronal cell fate and new leads for neuro-regenerative drugs.


Human Molecular Genetics | 2013

Genome-wide Loss of 5-hmC is a Novel Epigenetic Feature of Huntington's Disease

Fengli Wang; Yeran Yang; Xiwen Lin; Jiu-Qiang Wang; Yong-Sheng Wu; Wenjuan Xie; Dandan Wang; Shu Zhu; You-Qi Liao; Qinmiao Sun; Yun-Gui Yang; Huai-Rong Luo; Caixia Guo; Chunsheng Han; Tie-Shan Tang

5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntingtons disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identified disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/β-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.


Cell Research | 2014

Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination

Min Gao; Wei Wei; Ming Ming Li; Yong Sheng Wu; Zhaoqing Ba; Kang Xuan Jin; Miao Miao Li; You Qi Liao; Samir Adhikari; Zechen Chong; Ting Zhang; Caixia Guo; Tie-Shan Tang; Bing Tao Zhu; Xing Zhi Xu; Niels Mailand; Yun-Gui Yang; Yijun Qi; Jannie Rendtlew Danielsen

DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian cells. Interestingly, we show that Ago2 forms a complex with Rad51 and that the interaction is enhanced in cells treated with ionizing radiation. We demonstrate that Rad51 accumulation at DSB sites and HR repair depend on catalytic activity and small RNA-binding capability of Ago2. In contrast, DSB resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs to facilitate repair by HR.

Collaboration


Dive into the Tie-Shan Tang's collaboration.

Top Co-Authors

Avatar

Caixia Guo

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Fengli Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Min Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongmei Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaolu Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Errol C. Friedberg

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yeran Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

Beijing Institute of Genomics

View shared research outputs
Researchain Logo
Decentralizing Knowledge