Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiila-Riikka Kiema is active.

Publication


Featured researches published by Tiila-Riikka Kiema.


Biochemical Journal | 2002

Organization of the multifunctional enzyme type 1: interaction between N- and C-terminal domains is required for the hydratase-1/isomerase activity.

Tiila-Riikka Kiema; Jukka P. Taskinen; Päivi Pirilä; Kari Koivuranta; Rik K. Wierenga; J. Kalervo Hiltunen

Rat peroxisomal multifunctional enzyme type 1 (perMFE-1) is a monomeric protein of beta-oxidation. We have defined five functional domains (A, B, C, D and E) in the perMFE-1 based on comparison of the amino acid sequence with homologous proteins from databases and structural data of the hydratase-1/isomerases (H1/I) and (3 S )-hydroxyacyl-CoA dehydrogenases (HAD). Domain A (residues 1-190) comprises the H1/I fold and catalyses both 2-enoyl-CoA hydratase-1 and Delta(3)-Delta(2)-enoyl-CoA isomerase reactions. Domain B (residues 191-280) links domain A to the (3 S )-dehydrogenase region, which includes both domain C (residues 281-474) and domain D (residues 480-583). Domains C and D carry features of the dinucleotide-binding and the dimerization domains of monofunctional HADs respectively. Domain E (residues 584-722) has sequence similarity to domain D of the perMFE-1, which suggests that it has evolved via partial gene duplication. Experiments with engineered perMFE-1 variants demonstrate that the H1/I competence of domain A requires stabilizing interactions with domains D and E. The variant His-perMFE (residues 288-479)Delta, in which the domain C is deleted, is stable and has hydratase-1 activity. It is proposed that the extreme C-terminal domain E in perMFE-1 serves the following three functions: (i) participation in the folding of the N-terminus into a functionally competent H1/I fold, (ii) stabilization of the dehydrogenation domains by interaction with the domain D and (iii) the targeting of the perMFE-1 to peroxisomes via its C-terminal tripeptide.


Acta Crystallographica Section D-biological Crystallography | 2014

The Crystal Structure of Human Mitochondrial 3-Ketoacyl-Coa Thiolase (T1): Insight Into the Reaction Mechanism of its Thiolase and Thioesterase Activities

Tiila-Riikka Kiema; Rajesh K. Harijan; Malgorzata Strozyk; Toshiyuki Fukao; Stefan E. H. Alexson; Rik K. Wierenga

Crystal structures of human mitochondrial 3-ketoacyl-CoA thiolase (hT1) in the apo form and in complex with CoA have been determined at 2.0 Å resolution. The structures confirm the tetrameric quaternary structure of this degradative thiolase. The active site is surprisingly similar to the active site of the Zoogloea ramigera biosynthetic tetrameric thiolase (PDB entries 1dm3 and 1m1o) and different from the active site of the peroxisomal dimeric degradative thiolase (PDB entries 1afw and 2iik). A cavity analysis suggests a mode of binding for the fatty-acyl tail in a tunnel lined by the Nβ2-Nα2 loop of the adjacent subunit and the Lα1 helix of the loop domain. Soaking of the apo hT1 crystals with octanoyl-CoA resulted in a crystal structure in complex with CoA owing to the intrinsic acyl-CoA thioesterase activity of hT1. Solution studies confirm that hT1 has low acyl-CoA thioesterase activity for fatty acyl-CoA substrates. The fastest rate is observed for the hydrolysis of butyryl-CoA. It is also shown that T1 has significant biosynthetic thiolase activity, which is predicted to be of physiological importance.


Acta Crystallographica Section D-biological Crystallography | 2002

Crystallization and characterization of the dehydrogenase domain from rat peroxisomal multifunctional enzyme type 1

Jukka P. Taskinen; Tiila-Riikka Kiema; Kari Koivuranta; R.K. Wierenga; J K Hiltunen

Peroxisomal multifunctional enzyme type 1 from rat (perMFE-1) is a monomeric multidomain protein shown to have 2-enoyl-CoA hydratase/Delta(3)-Delta(2)-enoyl-CoA isomerase and (3S)-hydroxyacyl-CoA dehydrogenase domains followed by a C-terminal extension of 130 amino acids with unknown function apart from being a carrier of the peroxisomal targeting signal type 1. The truncated perMFE-1 without the N-terminal hydratase/isomerase domain (perMFE-1DH; residues 260-722) was overexpressed as an enzymatically active recombinant protein, purified and characterized. Using (3S)-hydroxydecanoyl-CoA as a substrate, the specific enzymatic activity of perMFE-1DH was determined to be 2.2 micromol min(-1) mg(-1), comparable with that of perMFE-1 purified from rat liver (2.8 micromol min(-1) mg(-1)). The protein was crystallized in the apo form by the hanging-drop method and a complete data set to 2.45 A resolution was collected using a rotating-anode X-ray source. The crystals have primitive tetragonal symmetry, with unit-cell parameters a = b = 125.9, c = 60.2 A.


Acta Crystallographica Section D-biological Crystallography | 2015

Structural characterization of a mitochondrial 3-ketoacyl-CoA (T1)-like thiolase from Mycobacterium smegmatis.

Neelanjana Janardan; Rajesh K. Harijan; Tiila-Riikka Kiema; R.K. Wierenga; Mrn Murthy

Thiolases catalyze the degradation and synthesis of 3-ketoacyl-CoA molecules. Here, the crystal structures of a T1-like thiolase (MSM-13 thiolase) from Mycobacterium smegmatis in apo and liganded forms are described. Systematic comparisons of six crystallographically independent unliganded MSM-13 thiolase tetramers (dimers of tight dimers) from three different crystal forms revealed that the two tight dimers are connected to a rigid tetramerization domain via flexible hinge regions, generating an asymmetric tetramer. In the liganded structure, CoA is bound to those subunits that are rotated towards the tip of the tetramerization loop of the opposing dimer, suggesting that this loop is important for substrate binding. The hinge regions responsible for this rotation occur near Val123 and Arg149. The Lα1-covering loop-Lα2 region, together with the Nβ2-Nα2 loop of the adjacent subunit, defines a specificity pocket that is larger and more polar than those of other tetrameric thiolases, suggesting that MSM-13 thiolase has a distinct substrate specificity. Consistent with this finding, only residual activity was detected with acetoacetyl-CoA as the substrate in the degradative direction. No activity was observed with acetyl-CoA in the synthetic direction. Structural comparisons with other well characterized thiolases suggest that MSM-13 thiolase is probably a degradative thiolase that is specific for 3-ketoacyl-CoA molecules with polar, bulky acyl chains.


PLOS Pathogens | 2018

De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions

Yoann Millerioux; Muriel Mazet; Guillaume Bouyssou; Stefan Allmann; Tiila-Riikka Kiema; Eloïse Bertiaux; Laetitia Fouillen; Chandan Thapa; Marc Biran; Nicolas Plazolles; Franziska Dittrich-Domergue; Aline Crouzols; Rik K. Wierenga; Brice Rotureau; Patrick Moreau; Frédéric Bringaud

De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway.


Protein Engineering Design & Selection | 2017

Crystallographic substrate binding studies of Leishmania mexicana SCP2-thiolase (type-2): unique features of oxyanion hole-1

Rajesh K. Harijan; Tiila-Riikka Kiema; Shahan M. Syed; Imran Qadir; Muriel Mazet; Frédéric Bringaud; Paul A. M. Michels; Rik K. Wierenga

C Structures of the C123A variant of the dimeric Leishmania mexicana SCP2-thiolase (type-2) (Lm-thiolase), complexed with acetyl-CoA and acetoacetyl-CoA, respectively, are reported. The catalytic site of thiolase contains two oxyanion holes, OAH1 and OAH2, which are important for catalysis. The two structures reveal for the first time the hydrogen bond interactions of the CoA-thioester oxygen atom of the substrate with the hydrogen bond donors of OAH1 of a CHH-thiolase. The amino acid sequence fingerprints ( xS, EAF, G P) of three catalytic loops identify the active site geometry of the well-studied CNH-thiolases, whereas SCP2-thiolases (type-1, type-2) are classified as CHH-thiolases, having as corresponding fingerprints xS, DCF and G P. In all thiolases, OAH2 is formed by the main chain NH groups of two catalytic loops. In the well-studied CNH-thiolases, OAH1 is formed by a water (of the Wat-Asn(NEAF) dyad) and NE2 (of the GHP-histidine). In the two described liganded Lm-thiolase structures, it is seen that in this CHH-thiolase, OAH1 is formed by NE2 of His338 (HDCF) and His388 (GHP). Analysis of the OAH1 hydrogen bond networks suggests that the GHP-histidine is doubly protonated and positively charged in these complexes, whereas the HDCF histidine is neutral and singly protonated.


FEBS Open Bio | 2017

Structural enzymology comparisons of multifunctional enzyme, type‐1 (MFE1): the flexibility of its dehydrogenase part

Prasad Kasaragod; Getnet B. Midekessa; Shruthi Sridhar; Werner Schmitz; Tiila-Riikka Kiema; J K Hiltunen; Rik K. Wierenga

Multifunctional enzyme, type‐1 (MFE1) is a monomeric enzyme with a 2E‐enoyl‐CoA hydratase and a 3S‐hydroxyacyl‐CoA dehydrogenase (HAD) active site. Enzyme kinetic data of rat peroxisomal MFE1 show that the catalytic efficiencies for converting the short‐chain substrate 2E‐butenoyl‐CoA into acetoacetyl‐CoA are much lower when compared with those of the homologous monofunctional enzymes. The mode of binding of acetoacetyl‐CoA (to the hydratase active site) and the very similar mode of binding of NAD+ and NADH (to the HAD part) are described and compared with those of their monofunctional counterparts. Structural comparisons suggest that the conformational flexibility of the HAD and hydratase parts of MFE1 are correlated. The possible importance of the conformational flexibility of MFE1 for its biocatalytic properties is discussed.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2016

Crystal structures of two monomeric triosephosphate isomerase variants identified via a directed-evolution protocol selecting for L-arabinose isomerase activity.

Mirja Krause; Tiila-Riikka Kiema; Peter Neubauer; Rik K. Wierenga

The crystal structures are described of two variants of A-TIM: Ma18 (2.7 Å resolution) and Ma21 (1.55 Å resolution). A-TIM is a monomeric loop-deletion variant of triosephosphate isomerase (TIM) which has lost the TIM catalytic properties. Ma18 and Ma21 were identified after extensive directed-evolution selection experiments using an Escherichia coli L-arabinose isomerase knockout strain expressing a randomly mutated A-TIM gene. These variants facilitate better growth of the Escherichia coli selection strain in medium supplemented with 40 mM L-arabinose. Ma18 and Ma21 differ from A-TIM by four and one point mutations, respectively. Ma18 and Ma21 are more stable proteins than A-TIM, as judged from CD melting experiments. Like A-TIM, both proteins are monomeric in solution. In the Ma18 crystal structure loop 6 is open and in the Ma21 crystal structure loop 6 is closed, being stabilized by a bound glycolate molecule. The crystal structures show only small differences in the active site compared with A-TIM. In the case of Ma21 it is observed that the point mutation (Q65L) contributes to small structural rearrangements near Asn11 of loop 1, which correlate with different ligand-binding properties such as a loss of citrate binding in the active site. The Ma21 structure also shows that its Leu65 side chain is involved in van der Waals interactions with neighbouring hydrophobic side-chain moieties, correlating with its increased stability. The experimental data suggest that the increased stability and solubility properties of Ma21 and Ma18 compared with A-TIM cause better growth of the selection strain when coexpressing Ma21 and Ma18 instead of A-TIM.


Structure | 2005

Structural Basis for Vertebrate Filamin Dimerization

Regina Pudas; Tiila-Riikka Kiema; P. Jonathan G. Butler; Murray Stewart; Jari Ylänne


Journal of Molecular Biology | 1998

The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule

Engel Ck; Tiila-Riikka Kiema; J K Hiltunen; Rik K. Wierenga

Collaboration


Dive into the Tiila-Riikka Kiema's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kari Koivuranta

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge