Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiina Wahlfors is active.

Publication


Featured researches published by Tiina Wahlfors.


Nature Genetics | 2009

Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility

Julius Gudmundsson; Patrick Sulem; Daniel F. Gudbjartsson; Thorarinn Blondal; Arnaldur Gylfason; Bjarni A. Agnarsson; Kristrun R. Benediktsdottir; Droplaug N. Magnusdottir; Gudbjorg Orlygsdottir; Margret Jakobsdottir; Simon N. Stacey; Asgeir Sigurdsson; Tiina Wahlfors; Teuvo L.J. Tammela; Joan P. Breyer; Kate M. McReynolds; Kevin M. Bradley; Berta Saez; Javier Godino; Sebastian Navarrete; Fernando Fuertes; Laura Murillo; Eduardo Polo; Katja K. Aben; Inge M. van Oort; Brian K. Suarez; Brian T. Helfand; Donghui Kan; Carlo Zanon; Michael L. Frigge

We report a prostate cancer genome-wide association follow-on study. We discovered four variants associated with susceptibility to prostate cancer in several European populations: rs10934853[A] (OR = 1.12, P = 2.9 × 10−10) on 3q21.3; two moderately correlated (r2 = 0.07) variants, rs16902094[G] (OR = 1.21, P = 6.2 × 10−15) and rs445114[T] (OR = 1.14, P = 4.7 × 10−10), on 8q24.21; and rs8102476[C] (OR = 1.12, P = 1.6 × 10−11) on 19q13.2. We also refined a previous association signal on 11q13 with the SNP rs11228565[A] (OR = 1.23, P = 6.7 × 10−12). In a multivariate analysis using 22 prostate cancer risk variants typed in the Icelandic population, we estimated that carriers in the top 1.3% of the risk distribution are at a 2.5 times greater risk of developing the disease than members of the general population.


Cancer Epidemiology, Biomarkers & Prevention | 2008

Multiple Novel Prostate Cancer Predisposition Loci Confirmed by an International Study: The PRACTICAL Consortium

Zsofia Kote-Jarai; Douglas F. Easton; Janet L. Stanford; Elaine A. Ostrander; Johanna Schleutker; Sue A. Ingles; Daniel J. Schaid; Stephen N. Thibodeau; Thilo Dörk; David E. Neal; Angela Cox; Christiane Maier; Walter Vogel; Michelle Guy; Kenneth Muir; Artitaya Lophatananon; Mary-Anne Kedda; Amanda B. Spurdle; Suzanne K. Steginga; Esther M. John; Graham G. Giles; John L. Hopper; Pierre O. Chappuis; Pierre Hutter; William D. Foulkes; Nancy Hamel; Claudia A. Salinas; Joseph S. Koopmeiners; Danielle M. Karyadi; Bo Johanneson

A recent genome-wide association study found that genetic variants on chromosomes 3, 6, 7, 10, 11, 19 and X were associated with prostate cancer risk. We evaluated the most significant single-nucleotide polymorphisms (SNP) in these loci using a worldwide consortium of 13 groups (PRACTICAL). Blood DNA from 7,370 prostate cancer cases and 5,742 male controls was analyzed by genotyping assays. Odds ratios (OR) associated with each genotype were estimated using unconditional logistic regression. Six of the seven SNPs showed clear evidence of association with prostate cancer (P = 0.0007-P = 10−17). For each of these six SNPs, the estimated per-allele OR was similar to those previously reported and ranged from 1.12 to 1.29. One SNP on 3p12 (rs2660753) showed a weaker association than previously reported [per-allele OR, 1.08 (95% confidence interval, 1.00-1.16; P = 0.06) versus 1.18 (95% confidence interval, 1.06-1.31)]. The combined risks associated with each pair of SNPs were consistent with a multiplicative risk model. Under this model, and in combination with previously reported SNPs on 8q and 17q, these loci explain 16% of the familial risk of the disease, and men in the top 10% of the risk distribution have a 2.1-fold increased risk relative to general population rates. This study provides strong confirmation of these susceptibility loci in multiple populations and shows that they make an important contribution to prostate cancer risk prediction. (Cancer Epidemiol Biomarkers Prev 2008;17(8):2052–61)


Cancer Epidemiology, Biomarkers & Prevention | 2013

HOXB13 G84E Mutation in Finland: Population-Based Analysis of Prostate, Breast, and Colorectal Cancer Risk

Virpi Laitinen; Tiina Wahlfors; Leena Saaristo; Tommi Rantapero; Liisa M. Pelttari; Outi Kilpivaara; Satu-Leena Laasanen; Anne Kallioniemi; Heli Nevanlinna; Lauri A. Aaltonen; Robert L. Vessella; Anssi Auvinen; Tapio Visakorpi; Teuvo L.J. Tammela; Johanna Schleutker

Background: A recently identified germline mutation G84E in HOXB13 was shown to increase the risk of prostate cancer. In a family-based analysis by The International Consortium for Prostate Cancer Genetics (ICPCG), the G84E mutation was most prevalent in families from the Nordic countries of Finland (22.4%) and Sweden (8.2%). Methods: To further investigate the importance of G84E in the Finns, we determined its frequency in more than 4,000 prostate cancer cases and 5,000 controls. In addition, 986 breast cancer and 442 colorectal cancer (CRC) cases were studied. Genotyping was conducted using TaqMan, MassARRAY iPLEX, and sequencing. Statistical analyses were conducted using Fisher exact test, and overall survival was analyzed using Cox modeling. Results: The frequency of the G84E mutation was significantly higher among patients with prostate cancer and highest among patients with a family history of the disease, hereditary prostate cancer [8.4% vs. 1.0% in controls; OR 8.8; 95% confidence interval (CI), 4.9–15.7]. The mutation contributed significantly to younger age (≤55 years) at onset and high prostate-specific antigen (PSA; ≥20 ng/mL) at diagnosis. An association with increased prostate cancer risk in patients with prior benign prostate hyperplasia (BPH) diagnosis was also revealed. No statistically significant evidence for a contribution in CRC risk was detected, but a suggestive role for the mutation was observed in familial BRCA1/2-negative breast cancer. Conclusions: These findings confirm an increased cancer risk associated with the G84E mutation in the Finnish population, particularly for early-onset prostate cancer and cases with substantially elevated PSA. Impact: This study confirms the overall importance of the HOXB13 G84E mutation in prostate cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 22(3); 452–60. ©2012 AACR.


Human Molecular Genetics | 2015

Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

Ali Amin Al Olama; Tokhir Dadaev; Dennis J. Hazelett; Qiyuan Li; Daniel Leongamornlert; Edward J. Saunders; Sarah Stephens; Clara Cieza-Borrella; Ian Whitmore; S Benlloch Garcia; Graham G. Giles; Melissa C. Southey; Liesel M. FitzGerald; Henrik Grönberg; Fredrik Wiklund; Markus Aly; Brian E. Henderson; Frederick R. Schumacher; Christopher A. Haiman; Johanna Schleutker; Tiina Wahlfors; Teuvo L.J. Tammela; Børge G. Nordestgaard; Timothy J. Key; Ruth C. Travis; David E. Neal; Jenny Donovan; F C Hamdy; P Pharoah; Nora Pashayan

Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.


International Journal of Cancer | 2007

Evaluation of cancer virotherapy with attenuated replicative Semliki forest virus in different rodent tumor models.

Ann-Marie Määttä; Timo Liimatainen; Tiina Wahlfors; Thomas Wirth; Markus Vähä-Koskela; Linda Jansson; Piia Valonen; Katja Häkkinen; Outi Rautsi; Riikka Pellinen; Kimmo Mäkinen; Juhana M. Hakumäki; Ari Hinkkanen; Jarmo Wahlfors

Semliki Forest virus (SFV) is one of the latest candidates for a virotherapeutic agent against cancer, and recent studies have demonstrated its efficacy in tumor models. In the present study, we examined the antitumor efficacy of an avirulent SFV strain A7(74) and its derivative, a replication‐competent SFV vector VA7‐EGFP, in a partially immunodeficient mouse tumor model (subcutaneous A549 human lung adenocarcinoma in NMRI nu/nu mouse) and in an immunocompetent rat tumor model (intracranial BT4C glioma in BDIX rat). When subcutaneous mouse tumors were injected 3 times with VA7‐EGFP, intratumorally treated animals showed almost complete inhibition of tumor growth, while systemically treated mice displayed only delayed tumor growth (intravenous injection) or no response at all (intraperitoneal injection). This was at least partially due to a strong type I interferon (IFN) response in the tumors. The animals did not display any signs of abnormal behavior or encephalitis, even though SFV‐positive foci were detected in the brain after the initial blood viremia. Intracranial rat tumors were injected directly with SFV A7(74) virus and monitored with magnetic resonance imaging. Tumor growth was significantly reduced (p < 0.05) with one virus injection, but the tumor size continued to increase after a lag period and none of the treated animals survived. Three virus injections or T‐cell suppression with dexamethasone did not significantly improve treatment efficacy. It appeared that the local virotherapy induced extensive production of neutralizing anti‐SFV antibodies that most likely contributed to the insufficient treatment efficacy. In conclusion, we show here that SFV A7(74) is a potential oncolytic agent for cancer virotherapy, but major immunological hurdles may need to be overcome before the virus can be clinically tested.


International Journal of Cancer | 2011

Genome-Wide Linkage Scan for Prostate Cancer Susceptibility in Finland: Evidence for a Novel Locus on 2q37.3 and confirmation of signal on 17q21-q22

Cheryl D. Cropp; Claire L. Simpson; Tiina Wahlfors; Nati Ha; Asha George; MaryPat Jones; Ursula Harper; Damaris Ponciano-Jackson; Tiffany A. Green; Teuvo L.J. Tammela; Joan E. Bailey-Wilson; Johanna Schleutker

Genome‐wide linkage studies have been used to localize rare and highly penetrant prostate cancer (PRCA) susceptibility genes. Linkage studies performed in different ethnic backgrounds and populations have been somewhat disparate, resulting in multiple, often irreproducible signals because of genetic heterogeneity and high sporadic background of the disease. Our first genome‐wide linkage study and subsequent fine‐mapping study of Finnish hereditary prostate cancer (HPC) families gave evidence of linkage to one region. Here, we conducted subsequent scans with microsatellites and SNPs in a total of 69 Finnish HPC families. GENEHUNTER‐PLUS was used for parametric and nonparametric analyses. Our microsatellite genome‐wide linkage study provided evidence of linkage to 17q12‐q23, with a heterogeneity LOD (HLOD) score of 3.14 in a total of 54 of the 69 families. Genome‐wide SNP analysis of 59 of the 69 families gave a highest HLOD score of 3.40 at 2q37.3 under a dominant high penetrance model. Analyzing all 69 families by combining microsatellite and SNP maps also yielded HLOD scores of > 3.3 in two regions (2q37.3 and 17q12‐q21.3). These significant linkage peaks on chromosome 2 and 17 confirm previous linkage evidence of a locus on 17q from other populations and provide a basis for continued research into genetic factors involved in PRCA. Fine‐mapping analysis of these regions is ongoing and candidate genes at linked loci are currently under analysis.


The Prostate | 2015

Prediction of individual genetic risk to prostate cancer using a polygenic score.

Robert Szulkin; Tom Whitington; Martin Eklund; Markus Aly; Rosalind Eeles; Doug Easton; Zsofia Kote-Jarai; Ali Amin Al Olama; Sara Benlloch; Kenneth Muir; Graham G. Giles; Melissa C. Southey; Liesel M. FitzGerald; Brian E. Henderson; Frederick R. Schumacher; Christopher A. Haiman; Johanna Schleutker; Tiina Wahlfors; Tammela Tlj.; Børge G. Nordestgaard; Timothy J. Key; Ruth C. Travis; David E. Neal; Jenny Donovan; Freddie C. Hamdy; P Pharoah; Nora Pashayan; Khaw K-T.; Janet L. Stanford; S N Thibodeau

Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome‐wide significant level will improve disease prediction.


International Journal of Cancer | 2011

Identification of an aggressive prostate cancer predisposing variant at 11q13

Riikka Nurminen; Tiina Wahlfors; Teuvo L.J. Tammela; Johanna Schleutker

Prostate cancer is the most frequently diagnosed cancer in men; however, the genetic basis of susceptibility remains elusive. The EMSY gene is located in the prostate cancer linked chromosome region at 11q13.5. The aim of this study was to screen EMSY for sequence variants and to evaluate its association with the risk of prostate cancer. We performed a Finnish population‐based case–control study with 923 controls, 184 familial prostate cancer cases and 2,301 unselected prostate cancer cases. Variants were screened using sequencing and validated using the TaqMan assay and High Resolution Melting analysis. A total of 27 sequence variants were found, and 17 of them were novel. A rare intronic variant, IVS6‐43A>G (minor allele frequency of 0.004), increased the prostate cancer risk in familial cases (odds ratio [OR] = 7.5; 95% confidence interval [CI] = 1.3–45.5; p = 0.02). Further analysis with clinicopathological data revealed that the variant is associated with aggressive unselected cases (prostate specific antigen ≥ 20 μg/L or Gleason grade ≥ 7), based on both case–control (OR = 6.0; 95% CI = 1.3–26.4; p = 0.03) and case–case analyses (OR = 6.5; 95% CI = 1.5–28.4; p = 0.002). In addition, all variant‐positive familial cases had aggressive cancer. Our results indicate that the intronic variant IVS6‐43A>G increases the familial and unselected prostate cancer risk in a Finnish population and contributes to the aggressive progression of the disease in a high‐penetrance manner. The potential role of the variant as a predictive genetic marker for aggressive prostate cancer should be further evaluated.


PLOS ONE | 2011

Contribution of ARLTS1 Cys148Arg (T442C) Variant with Prostate Cancer Risk and ARLTS1 Function in Prostate Cancer Cells

Sanna Siltanen; Tiina Wahlfors; Martin Schindler; Outi R. Saramäki; John Patrick Mpindi; Leena Latonen; Robert L. Vessella; Teuvo L.J. Tammela; Olli Kallioniemi; Tapio Visakorpi; Johanna Schleutker

ARLTS1 is a recently characterized tumor suppressor gene at 13q14.3, a region frequently deleted in both sporadic and hereditary prostate cancer (PCa). ARLTS1 variants, especially Cys148Arg (T442C), increase susceptibility to different cancers, including PCa. In this study the role of Cys148Arg substitution was investigated as a risk factor for PCa using both genetic and functional analysis. Cys148Arg genotypes and expression of the ARLTS1 were explored in a large set of familial and unselected PCa cases, clinical tumor samples, xenografts, prostate cancer cell lines and benign prostatic hyperplasia (BPH) samples. The frequency of the variant genotype CC was significantly higher in familial (OR = 1.67, 95% CI = 1.08–2.56, P = 0.019) and unselected patients (OR = 1.52, 95% CI = 1.18–1.97, P = 0.001) and the overall risk was increased (OR = 1.54, 95% CI = 1.20–1.98, P = 0.0007). Additional analysis with clinicopathological data revealed an association with an aggressive disease (OR = 1.28, 95% CI = 1.05-∞, P = 0.02). The CC genotype of the Cys148Arg variant was also contributing to the lowered ARLTS1 expression status in lymphoblastoid cells from familial patients. In addition significantly lowered ARLTS1 expression was observed in clinical tumor samples compared to BPH samples (P = 0.01). The ARLTS1 co-expression signature based on previously published microarray data was generated from 1587 cancer samples confirming the low expression of ARLTS1 in PCa and showed that ARLTS1 expression was strongly associated with immune processes. This study provides strong confirmation of the important role of ARLTS1 Cys148Arg variant as a contributor in PCa predisposition and a potential marker for aggressive disease outcome.


American Journal of Human Genetics | 2014

An expressed retrogene of the master embryonic stem cell gene POU5F1 is associated with prostate cancer susceptibility.

Joan P. Breyer; Daniel C. Dorset; Travis Clark; Kevin M. Bradley; Tiina Wahlfors; Kate M. McReynolds; William H. Maynard; Sam S. Chang; Michael S. Cookson; Joseph A. Smith; Johanna Schleutker; William D. Dupont; Jeffrey R. Smith

Genetic association studies of prostate and other cancers have identified a major risk locus at chromosome 8q24. Several independent risk variants at this locus alter transcriptional regulatory elements, but an affected gene and mechanism for cancer predisposition have remained elusive. The retrogene POU5F1B within the locus has a preserved open reading frame encoding a homolog of the master embryonic stem cell transcription factor Oct4. We find that 8q24 risk alleles are expression quantitative trait loci correlated with reduced expression of POU5F1B in prostate tissue and that predicted deleterious POU5F1B missense variants are also associated with risk of transformation. POU5F1 is known to be self-regulated by the encoded Oct4 transcription factor. We further observe that POU5F1 expression is directly correlated with POU5F1B expression. Our results suggest that a pathway critical to self-renewal of embryonic stem cells may also have a role in the origin of cancer.

Collaboration


Dive into the Tiina Wahlfors's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zsofia Kote-Jarai

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jarmo Wahlfors

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge