Tijana Mitić
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tijana Mitić.
Oxidative Medicine and Cellular Longevity | 2016
Pierpaola Davalli; Tijana Mitić; Andrea Caporali; Angela Lauriola; Domenico D'Arca
The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.
Journal of Hepatology | 2010
Alison D. McNeilly; David P. Macfarlane; Emmett O'Flaherty; Dawn E. W. Livingstone; Tijana Mitić; Kirsty M.M. McConnell; Scott M McKenzie; Eleanor Davies; Rebecca M. Reynolds; Helle Thiesson; Ole Skøtt; Brian R. Walker; Ruth Andrew
Background & Aims Suppression of the hypothalamic–pituitary–adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5β-reductase. Methods The effect of bile acids on glucocorticoid metabolism was studied in vitro in hepatic subcellular fractions and hepatoma cells, allowing quantitation of the kinetics and transcript abundance of 5β-reductase. Metabolism was subsequently examined in vivo in rats following dietary manipulation or bile duct ligation. Finally, glucocorticoid metabolism was assessed in humans with obstructive jaundice. Results In rat hepatic cytosol, chenodeoxycholic acid competitively inhibited 5β-reductase (Ki 9.19 ± 0.40 μM) and reduced its transcript abundance (in H4iiE cells) and promoter activity (reporter system, HepG2 cells). In Wistar rats, dietary chenodeoxycholic acid (1% w/w chow) inhibited hepatic 5β-reductase activity, reduced urinary excretion of 3α,5β-tetrahydrocorticosterone and reduced adrenal weight. Conversely, a fat-free diet suppressed bile acid levels and increased hepatic 5β-reductase activity, supplementation of the fat-free diet with CDCA reduced 5β-reductase activity, and urinary 3α,5β-reduced corticosterone. Cholestasis in rats suppressed hepatic 5β-reductase activity and transcript abundance. In eight women with obstructive jaundice, relative urinary excretion of 3α,5β-tetrahydrocortisol was significantly lower than in healthy controls. Conclusion These data suggest a novel role for bile acids in inhibiting hepatic glucocorticoid clearance, of sufficient magnitude to suppress hypothalamic–pituitary–adrenal axis activity. Elevated hepatic bile acids may account for adrenal insufficiency in liver disease.
Nature Communications | 2015
Andrea Caporali; Marco Meloni; Audrey Nailor; Tijana Mitić; Saran Shantikumar; Federica Riu; Graciela B. Sala-Newby; Lorraine Rose; Marie Besnier; Rajesh Katare; Christine Voellenkle; Paul Verkade; Fabio Martelli; Paolo Madeddu; Costanza Emanueli
The communication between vascular endothelial cells (ECs) and pericytes in the microvasculature is fundamental for vascular growth and homeostasis; however, these processes are disrupted by diabetes. Here we show that modulation of p75NTR expression in ECs exposed to high glucose activates transcription of miR-503, which negatively affects pericyte function. p75NTR activates NF-κB to bind the miR-503 promoter and upregulate miR-503 expression in ECs. NF-κB further induces activation of Rho kinase and shedding of endothelial microparticles carrying miR-503, which transfer miR-503 from ECs to vascular pericytes. The integrin-mediated uptake of miR-503 in the recipient pericytes reduces expression of EFNB2 and VEGFA, resulting in impaired migration and proliferation. We confirm operation of the above mechanisms in mouse models of diabetes, in which EC-derived miR-503 reduces pericyte coverage of capillaries, increased permeability and impaired post-ischaemic angiogenesis in limb muscles. Collectively, our data demonstrate that miR-503 regulates pericyte–endothelial crosstalk in microvascular diabetic complications.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2015
Ilaria Floris; Betty Descamps; Tijana Mitić; Anna Maria Posadino; Saran Shantikumar; Graciela B. Sala-Newby; Gianpiero Capobianco; Giuseppe Mangialardi; Lynsey Howard; Salvatore Dessole; Raul Urrutia; Gianfranco Pintus; Costanza Emanueli
Objective— Gestational diabetes mellitus (GDM) produces fetal hyperglycemia with increased lifelong risks for the exposed offspring of cardiovascular and other diseases. Epigenetic mechanisms induce long-term gene expression changes in response to in utero environmental perturbations. Moreover, microRNAs (miRs) control the function of endothelial cells (ECs) under physiological and pathological conditions and can target the epigenetic machinery. We investigated the functional and expressional effect of GDM on human fetal ECs of the umbilical cord vein (HUVECs). We focused on miR-101 and 1 of its targets, enhancer of zester homolog-2 (EZH2), which trimethylates the lysine 27 of histone 3, thus repressing gene transcription. EZH2 exists as isoforms &agr; and &bgr;. Approach and Results— HUVECs were prepared from GDM or healthy pregnancies and tested in apoptosis, migration, and Matrigel assays. GDM-HUVECs demonstrated decreased functional capacities, increased miR-101 expression, and reduced EZH2- &bgr; and trimethylation of histone H3 on lysine 27 levels. MiR-101 inhibition increased EZH2 expression and improved GDM-HUVEC function. Healthy HUVECs were exposed to high or normal D-glucose concentration for 48 hours and then tested for miR-101 and EZH2 expression. Similar to GDM, high glucose increased miR-101 expression. Chromatin immunoprecipitation using an antibody for EZH2 followed by polymerase chain reaction analyses for miR-101 gene promoter regions showed that both GDM and high glucose concentration reduced EZH2 binding to the miR-101 locus in HUVECs. Moreover, EZH2-&bgr; overexpression inhibited miR-101 promoter activity in HUVECs. Conclusions— GDM impairs HUVEC function via miR-101 upregulation. EZH2 is both a transcriptional inhibitor and a target gene of miR-101 in HUVECs, and it contributes to some of the miR-101-induced defects of GDM-HUVECs.
The FASEB Journal | 2013
Tiina Kipari; Patrick W. F. Hadoke; Javaid Iqbal; Tak Yung Man; Eileen Miller; Agnes E. Coutinho; Zhenguang Zhang; Katie M. Sullivan; Tijana Mitić; Dawn E. W. Livingstone; Christopher Schrecker; Kay Samuel; Christopher I White; M. Amine Bouhlel; Giulia Chinetti-Gbaguidi; Bart Staels; Ruth Andrew; Brian R. Walker; John Savill; Karen E. Chapman; Jonathan R. Seckl
11β‐Hydroxysteroid dehydrogenase type‐1 (11β‐HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11β‐HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11β‐HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis‐prone apolipoprotein E‐knockout (ApoE‐KO) mice were treated with a selective 11β‐HSD1 inhibitor or crossed with 11β‐HSD1‐KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet. 11β‐HSD1 inhibition or deficiency attenuated atherosclerosis (74–76%) without deleterious effects on plaque structure. This occurred without affecting plasma lipids or glucose, suggesting independence from classical metabolic risk factors. KO plaques were not more inflamed and indeed had 36% less T‐cell infiltration, associated with 38% reduced circulating monocyte chemoattractant protein‐1 (MCP‐1) and 36% lower lesional vascular cell adhesion molecule‐1 (VCAM‐1). Bone marrow (BM) cells are key to the atheroprotection, since transplantation of DKO BM to irradiated ApoE‐KO mice reduced atherosclerosis by 51%. 11β‐HSD1‐null macrophages show 76% enhanced cholesterol ester export. Thus, 11β‐HSD1 deficiency reduces atherosclerosis without exaggerated lesional inflammation independent of metabolic risk factors. Selective 11β‐HSD1 inhibitors promise novel antiatherosclerosis effects over and above their benefits for metabolic risk factors via effects on BM cells, plausibly macrophages.—Kipari, T., Hadoke, P. W. F., Iqbal, J., Man, T. Y., Miller, E., Coutinho, A. E., Zhang, Z., Sullivan, K. M., Mitic, T., Livingstone, D. E. W., Schrecker, C., Samuel, K., White, C. I., Bouhlel, M. A., Chinetti‐Gbaguidi, G., Staels, B., Andrew, R., Walker, B. R., Savill, J. S., Chapman, K. E., Seckl, J. R. 11β‐hydroxysteroid dehydrogenase type 1 deficiency in bone marrow‐derived cells reduces atherosclerosis. FASEB J. 27, 1519–1531 (2013). www.fasebj.org
Arteriosclerosis, Thrombosis, and Vascular Biology | 2012
Andrea Caporali; Marco Meloni; Ashley M. Miller; Klemens Vierlinger; Alessandro Cardinali; Gaia Spinetti; Audrey Nailor; Ezio Faglia; Sergio Losa; Ambra Gotti; Orazio Fortunato; Tijana Mitić; Manuela Hofner; Christa Noehammer; Paolo Madeddu; Costanza Emanueli
Objective—The p75 neurotrophin receptor (p75NTR) contributes to diabetes mellitus−induced defective postischemic neovascularization. The interleukin-33 receptor ST2 is expressed as transmembrane (ST2L) and soluble (sST2) isoforms. Here, we studied the following: (1) the impact of p75NTR in the healing of ischemic and diabetic calf wounds; (2) the link between p75NTR and ST2; and (3) circulating sST2 levels in critical limb ischemia (CLI) patients. Methods and Results—Diabetes mellitus was induced in p75NTR knockout (p75KO) mice and wild-type (WT) littermates by streptozotocin. Diabetic and nondiabetic p75KO and WT mice received left limb ischemia induction and a full-thickness wound on the ipsilateral calf. Diabetes mellitus impaired wound closure and angiogenesis and increased ST2 expression in WT, but not in p75KO wounds. In cultured endothelial cells, p75NTR promoted ST2 (both isoforms) expression through p38MAPK/activating transcription factor 2 pathway activation. Next, sST2 was measured in the serum of patients with CLI undergoing either revascularization or limb amputation and in the 2 nondiabetic groups (with CLI or nonischemic individuals). Serum sST2 increased in diabetic patients with CLI and was directly associated with higher mortality at 1 year from revascularization. Conclusion—p75NTR inhibits the healing of ischemic lower limb wounds in diabetes mellitus and promotes ST2 expression. Circulating sST2 predicts mortality in diabetic CLI patients.
Molecular Therapy | 2015
Tijana Mitić; Andrea Caporali; Ilaria Floris; Marco Meloni; Micol Marchetti; Raul Urrutia; Gianni D. Angelini; Costanza Emanueli
Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia.
Biochemical Pharmacology | 2013
Tijana Mitić; Steven Shave; Nina Semjonous; Iain W. McNae; Diego F. Cobice; Gareth G. Lavery; Scott P. Webster; Patrick W. F. Hadoke; Brian R. Walker; Ruth Andrew
Graphical abstract
Biochimie | 2013
Tijana Mitić; Ruth Andrew; Brian R. Walker; Patrick W. F. Hadoke
The atherogenic 7-oxysterols, 7-ketocholesterol (7-KC) and 7β-hydroxycholesterol (7βOHC), can directly impair arterial function. Inter-conversion of 7-KC and 7βOHC has recently been shown as a novel role for the glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Since this enzyme is expressed in vascular smooth muscle cells, we addressed the hypothesis that inter-conversion of 7-KC and 7βOHC by 11β-HSD1 may contribute to regulation of arterial function. Incubation (4–24 h) of aortic rings with either 7-KC (25 μM) or 7βOHC (20 μM) had no effect on endothelium-dependent (acetylcholine) or -independent (sodium nitroprusside) relaxation. In contrast, exposure to 7-KC (but not to 7βOHC) attenuated noradrenaline-induced contraction (Emax) after 4 h (0.78 ± 0.28 vs 0.40 ± 0.08 mN/mm; p < 0.05) and 24 h (2.28 ± 0.34 vs 1.56 ± 0.48 mN/mm; p < 0.05). Both 7-oxysterols were detected by GCMS in the aortic wall of chow-fed C57Bl6/J mice, with concentrations of 7-KC (1.41 ± 0.81 ng/mg) higher (p = 0.05) than 7βOHC (0.16 ± 0.06 ng/mg). In isolated mouse aortic rings 11β-HSD1 was shown to act as an oxo-reductase, inter-converting 7-KC and 7βOHC. This activity was lost in aorta from 11β-HSD1−/− mice, which had low oxysterol levels. Renal homogenates from 11β-HSD1−/− mice were used to confirm that the type 2 isozyme of 11β-HSD does not inter-convert 7-KC and 7βOHC. These results demonstrate that 7-KC has greater effects than 7βOHC on vascular function, and that 11β-HSD1 can inter-convert 7-KC and 7βOHC in the arterial wall, contributing to the regulation of 7-oxysterol levels and potentially influencing vascular function. This mechanism may be important in the cardioprotective effects of 11β-HSD1 inhibitors.
Endocrine‚ Metabolic & Immune Disorders-Drug Targets | 2012
Tijana Mitić; Costanza Emanueli
Vascular dysfunction is a common consequence of diabetes mellitus. Stable propagation of gene expression from cell to cell generation during development of diseases (like diabetes) is regulated by epigenetic mechanisms. These are heritable patterns of gene expression that cannot solely be explained by changes in DNA sequence. Recent evidence shows that diabetes-induced epigenetic changes can affect gene expression in vascular endothelial cells and vascular smooth muscles cells. Such effects further influence inflammatory and insulin production pathways in these cells and thus ensure a long-term memory, whereby epigenetic changes are maintained even long after restoring normo-glycaemic conditions by appropriate therapeutic approaches. This review focuses on the epigenetic marks, which endure on the vascular chromatin under diabetic conditions.