Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Till Adhikary is active.

Publication


Featured researches published by Till Adhikary.


PLOS ONE | 2011

Genomewide Analyses Define Different Modes of Transcriptional Regulation by Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ)

Till Adhikary; Kerstin Kaddatz; Florian Finkernagel; Anne Schönbauer; Wolfgang Meissner; Maren Scharfe; Michael Jarek; Helmut Blöcker; Sabine Müller-Brüsselbach; Rolf Müller

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with essential functions in lipid, glucose and energy homeostasis, cell differentiation, inflammation and metabolic disorders, and represent important drug targets. PPARs heterodimerize with retinoid X receptors (RXRs) and can form transcriptional activator or repressor complexes at specific DNA elements (PPREs). It is believed that the decision between repression and activation is generally governed by a ligand-mediated switch. We have performed genomewide analyses of agonist-treated and PPARβ/δ-depleted human myofibroblasts to test this hypothesis and to identify global principles of PPARβ/δ-mediated gene regulation. Chromatin immunoprecipitation sequencing (ChIP-Seq) of PPARβ/δ, H3K4me3 and RNA polymerase II enrichment sites combined with transcriptional profiling enabled the definition of 112 bona fide PPARβ/δ target genes showing either of three distinct types of transcriptional response: (I) ligand-independent repression by PPARβ/δ; (II) ligand-induced activation and/or derepression by PPARβ/δ; and (III) ligand-independent activation by PPARβ/δ. These data identify PPRE-mediated repression as a major mechanism of transcriptional regulation by PPARβ/δ, but, unexpectedly, also show that only a subset of repressed genes are activated by a ligand-mediated switch. Our results also suggest that the type of transcriptional response by a given target gene is connected to the structure of its associated PPRE(s) and the biological function of its encoded protein. These observations have important implications for understanding the regulatory PPAR network and PPARβ/δ ligand-based drugs.


Molecular Pharmacology | 2010

15-Hydroxyeicosatetraenoic Acid Is a Preferential Peroxisome Proliferator-Activated Receptor β/δ Agonist

Simone Naruhn; Wolfgang Meissner; Till Adhikary; Kerstin Kaddatz; Thomas Klein; Bernhard Watzer; Sabine Müller-Brüsselbach; Rolf Müller

Peroxisome proliferator-activated receptor (PPARs) modulate target gene expression in response to unsaturated fatty acid ligands, such as arachidonic acid (AA). Here, we report that the AA metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) activates the ligand-dependent activation domain (AF2) of PPARβ/δ in vivo, competes with synthetic agonists in a PPARβ/δ ligand binding assay in vitro, and triggers the interaction of PPARβ/δ with coactivator peptides. These agonistic effects were also seen with PPARα and PPARγ, but to a significantly weaker extent. We further show that 15-HETE strongly induces the expression of the bona fide PPAR target gene Angptl4 in a PPARβ/δ-dependent manner and, conversely, that inhibition of 15-HETE synthesis reduces PPARβ/δ transcriptional activity. Consistent with its function as an agonistic ligand, 15-HETE triggers profound changes in chromatin-associated PPARβ/δ complexes in vivo, including the recruitment of the coactivator cAMP response element-binding protein binding protein. Both 15R-HETE and 15S-HETE are similarly potent at inducing PPARβ/δ coactivator binding and transcriptional activation, indicating that 15-HETE enantiomers generated by different pathways function as PPARβ/δ agonists.


Journal of Biological Chemistry | 2010

Transcriptional Profiling Identifies Functional Interactions of TGFβ and PPARβ/δ Signaling SYNERGISTIC INDUCTION OF ANGPTL4 TRANSCRIPTION

Kerstin Kaddatz; Till Adhikary; Florian Finkernagel; Wolfgang Meissner; Sabine Müller-Brüsselbach; Rolf Müller

Peroxisome proliferator-activated receptors (PPARs) not only play a key role in regulating metabolic pathways but also modulate inflammatory processes, pointing to a functional interaction between PPAR and cytokine signaling pathways. In this study, we show by genome-wide transcriptional profiling that PPARβ/δ and transforming growth factor-β (TGFβ) pathways functionally interact in human myofibroblasts and that a subset of these genes is cooperatively activated by TGFβ and PPARβ/δ. Using the angiopoietin-like 4 (ANGPTL4) gene as a model, we demonstrate that two enhancer regions cooperate to mediate the observed synergistic response. A TGFβ-responsive enhancer located ∼8 kb upstream of the transcriptional start site is regulated by a mechanism involving SMAD3, ETS1, RUNX, and AP-1 transcription factors that interact with multiple contiguous binding sites. A second enhancer (PPAR-E) consisting of three juxtaposed PPAR response elements is located in the third intron ∼3.5 kb downstream of the transcriptional start site. The PPAR-E is strongly activated by all three PPAR subtypes, with a novel type of PPAR response element motif playing a central role. Although the PPAR-E is not regulated by TGFβ, it interacts with SMAD3, ETS1, RUNX2, and AP-1 in vivo, providing a possible mechanistic explanation for the observed synergism.


Nucleic Acids Research | 2011

Reverse crosstalk of TGFβ and PPARβ/δ signaling identified by transcriptional profiling

Josefine Stockert; Till Adhikary; Kerstin Kaddatz; Florian Finkernagel; Wolfgang Meissner; Sabine Müller-Brüsselbach; Rolf Müller

Previous work has provided strong evidence for a role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and transforming growth factor-β (TGFβ) in inflammation and tumor stroma function, raising the possibility that both signaling pathways are interconnected. We have addressed this hypothesis by microarray analyses of human diploid fibroblasts induced to myofibroblastic differentiation, which revealed a substantial, mostly reverse crosstalk of both pathways and identified distinct classes of genes. A major class encompasses classical PPAR target genes, including ANGPTL4, CPT1A, ADRP and PDK4. These genes are repressed by TGFβ, which is counteracted by PPARβ/δ activation. This is mediated, at least in part, by the TGFβ-induced recruitment of the corepressor SMRT to PPAR response elements, and its release by PPARβ/δ ligands, indicating that TGFβ and PPARβ/δ signals are integrated by chromatin-associated complexes. A second class represents TGFβ-induced genes that are downregulated by PPARβ/δ agonists, exemplified by CD274 and IL6, which is consistent with the anti-inflammatory properties of PPARβ/δ ligands. Finally, cooperative regulation by both ligands was observed for a minor group of genes, including several regulators of cell proliferation. These observations indicate that PPARβ/δ is able to influence the expression of distinct sets of both TGFβ-repressed and TGFβ-activated genes in both directions.


Journal of Medicinal Chemistry | 2012

(Z)-2-(2-bromophenyl)-3-{[4-(1-methyl-piperazine)amino]phenyl}acrylonitrile (DG172): an orally bioavailable PPARβ/δ-selective ligand with inverse agonistic properties.

Sonja Lieber; Frithjof Scheer; Wolfgang Meissner; Simone Naruhn; Till Adhikary; Sabine Müller-Brüsselbach; Wibke E. Diederich; Rolf Müller

The ligand-regulated nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a potential pharmacological target due to its role in disease-related biological processes. We used TR-FRET-based competitive ligand binding and coregulator interaction assays to screen 2693 compounds of the Open Chemical Repository of the NCI/NIH Developmental Therapeutics Program for inhibitory PPARβ/δ ligands. One compound, (Z)-3-(4-dimethylamino-phenyl)-2-phenyl-acrylonitrile, was used for a systematic SAR study. This led to the design of derivative 37, (Z)-2-(2-bromophenyl)-3-{[4-(1-methyl-piperazine)amino]phenyl}acrylonitrile (DG172), a novel PPARβ/δ-selective ligand showing high binding affinity (IC(50) = 27 nM) and potent inverse agonistic properties. 37 selectively inhibited the agonist-induced activity of PPARβ/δ, enhanced transcriptional corepressor recruitment, and down-regulated transcription of the PPARβ/δ target gene Angptl4 in mouse myoblasts (IC(50) = 9.5 nM). Importantly, 37 was bioavailable after oral application to mice with peak plasma levels in the concentration range of its maximal inhibitory potency, suggesting that 37 will be an invaluable tool to elucidate the functions and therapeutic potential of PPARβ/δ.


Molecular Pharmacology | 2011

High-Affinity Peroxisome Proliferator-Activated Receptor β/δ-Specific Ligands with Pure Antagonistic or Inverse Agonistic Properties

Simone Naruhn; Philipp M. Toth; Till Adhikary; Kerstin Kaddatz; Veronika Pape; Stefanie Dörr; Gerhard Klebe; Sabine Müller-Brüsselbach; Wibke E. Diederich; Rolf Müller

Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a ligand-regulated nuclear receptor with essential functions in metabolism and inflammation. We have synthesized a new derivative [methyl 3-(N-(4-(hexylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (ST247) structurally related to the published PPARβ/δ inhibitory ligand methyl 3-(N-(2-methoxy-4-(phenylamino)phenyl)sulfamoyl)thiophene-2-carboxylate (GSK0660). ST247 has a higher affinity to PPARβ/δ than GSK0660, and at equimolar concentrations, it more efficiently 1) induces the interaction with corepressors both in vitro and in vivo, 2) inhibits the agonist-induced transcriptional activity of PPARβ/δ, and 3) down-regulates basal level expression of the peroxisome proliferator responsive element-driven PPARβ/δ target gene ANGPTL4. Methyl 3-(N-(4-(tert-butylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (PT-S58), another high-affinity derivative from our series, also efficiently inhibits agonist-induced transcriptional activation, but in contrast to ST247, it does not enhance the interaction of PPARβ/δ with corepressors. PT-S58 rather prevents corepressor recruitment triggered by the inverse agonist ST247. These findings classify ST247 as an inverse agonist, whereas PT-S58 is the first pure PPARβ/δ antagonist described to date. It is noteworthy that ST247 and PT-S58 are also effective on PPRE-independent functions of PPARβ/δ: in monocytic cells, both ligands modulate expression of the activation marker CCL2 in the opposite direction as an established PPARβ/δ agonist. The possibility to differentially modulate specific functions of PPARβ/δ makes these novel compounds invaluable tools to advance our understanding of PPARβ/δ biology.


Frontiers in Oncology | 2017

The Unique Molecular and Cellular Microenvironment of Ovarian Cancer

Thomas Worzfeld; Elke Pogge von Strandmann; Magdalena Huber; Till Adhikary; Uwe Wagner; Silke Reinartz; Rolf Müller

The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.


Genome Biology | 2016

A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome

Silke Reinartz; Florian Finkernagel; Till Adhikary; Verena Rohnalter; Tim Schumann; Yvonne Schober; W. Andreas Nockher; Andrea Nist; Thorsten Stiewe; Julia M. Jansen; Uwe Wagner; Sabine Müller-Brüsselbach; Rolf Müller

BackgroundSoluble protein and lipid mediators play essential roles in the tumor environment, but their cellular origins, targets, and clinical relevance are only partially known. We have addressed this question for the most abundant cell types in human ovarian carcinoma ascites, namely tumor cells and tumor-associated macrophages.ResultsTranscriptome-derived datasets were adjusted for errors caused by contaminating cell types by an algorithm using expression data derived from pure cell types as references. These data were utilized to construct a network of autocrine and paracrine signaling pathways comprising 358 common and 58 patient-specific signaling mediators and their receptors. RNA sequencing based predictions were confirmed for several proteins and lipid mediators. Published expression microarray results for 1018 patients were used to establish clinical correlations for a number of components with distinct cellular origins and target cells. Clear associations with early relapse were found for STAT3-inducing cytokines, specific components of WNT and fibroblast growth factor signaling, ephrin and semaphorin axon guidance molecules, and TGFβ/BMP-triggered pathways. An association with early relapse was also observed for secretory macrophage-derived phospholipase PLA2G7, its product arachidonic acid (AA) and signaling pathways controlled by the AA metabolites PGE2, PGI2, and LTB4. By contrast, the genes encoding norrin and its receptor frizzled 4, both selectively expressed by cancer cells and previously not linked to tumor suppression, show a striking association with a favorable clinical course.ConclusionsWe have established a signaling network operating in the ovarian cancer microenvironment with previously unidentified pathways and have defined clinically relevant components within this network.


Nucleic Acids Research | 2015

The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state

Till Adhikary; Annika Wortmann; Tim Schumann; Florian Finkernagel; Sonja Lieber; Katrin Roth; Philipp M. Toth; Wibke E. Diederich; Andrea Nist; Thorsten Stiewe; Lara Kleinesudeik; Silke Reinartz; Sabine Müller-Brüsselbach; Rolf Müller

Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARβ/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARβ/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARβ/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARβ/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARβ/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARβ/δ in immune regulation.


Oncotarget | 2016

The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization.

Florian Finkernagel; Silke Reinartz; Sonja Lieber; Till Adhikary; Annika Wortmann; Nathalie Hoffmann; Tim Bieringer; Andrea Nist; Thorsten Stiewe; Julia M. Jansen; Uwe Wagner; Sabine Müller-Brüsselbach; Rolf Müller

Macrophages occur as resident cells of fetal origin or as infiltrating blood monocyte-derived cells. Despite the critical role of tumor-associated macrophages (TAMs) in tumor progression, the contribution of these developmentally and functionally distinct macrophage subsets and their alteration by the tumor microenvironment are poorly understood. We have addressed this question by comparing TAMs from human ovarian carcinoma ascites, resident peritoneal macrophages (pMPHs) and monocyte-derived macrophages (MDMs). Our study revealed striking a similarity between TAMs and pMPHs, which was considerably greater that the resemblance of TAMs and MDMs, including their transcriptomes, their inflammation-related activation state, the presence of receptors mediating immune functions and the expression of tumor-promoting mediators. Consistent with these results, TAMs phagocytized bacteria, presented peptide antigens and activated cytotoxic T cells within their pathophysiological environment. These observations support the notion that tumor-promoting properties of TAMs may reflect, at least to some extent, normal features of resident macrophages rather than functions induced by the tumor microenvironment. In spite of these surprising similarities between TAMs and pMPHs, bioinformatic analyses identified a TAM-selective signature of 30 genes that are upregulated relative to both pMPHs and MDMs. The majority of these genes is linked to extracellular matrix (ECM) remodeling, supporting a role for TAMs in cancer cell invasion and ovarian cancer progression.

Collaboration


Dive into the Till Adhikary's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge